nonnegative matrices
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 44)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 37 ◽  
pp. 698-708
Author(s):  
Qinghong Zhang

The paper is devoted to the study of the maximal angle between the $5\times 5$ semidefinite matrix cone and $5\times 5$ nonnegative matrix cone. A signomial geometric programming problem is formulated in the process to find the maximal angle. Instead of using an optimization problem solver to solve the problem numerically, the method of Lagrange Multipliers is used to solve the signomial geometric program, and therefore, to find the maximal angle between these two cones.


Author(s):  
Somayeh Zangoei Zadeh ◽  
Azim Rivaz

In this paper, we present a method for constructing a Jacobi matrix [Formula: see text] using [Formula: see text] known eigenvalues [Formula: see text]. Some conditions are also given under which the constructed matrix is nonnegative and its diagonal entries are specified. Finally, we present a technique for constructing symmetric and nonsymmetric nonnegative matrices by their eigenvalues.


2021 ◽  
Vol 180 (4) ◽  
pp. 289-314
Author(s):  
Costanza Catalano ◽  
Umer Azfar ◽  
Ludovic Charlier ◽  
Raphaël M. Jungers

A set of nonnegative matrices is called primitive if there exists a product of these matrices that is entrywise positive. Motivated by recent results relating synchronizing automata and primitive sets, we study the length of the shortest product of a primitive set having a column or a row with k positive entries, called its k-rendezvous time (k-RT), in the case of sets of matrices having no zero rows and no zero columns. We prove that the k-RT is at most linear w.r.t. the matrix size n for small k, while the problem is still open for synchronizing automata. We provide two upper bounds on the k-RT: the second is an improvement of the first one, although the latter can be written in closed form. We then report numerical results comparing our upper bounds on the k-RT with heuristic approximation methods.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-8
Author(s):  
Christian Grussler ◽  
Anders Rantzer

Abstract We address the issue of establishing standard forms for nonnegative and Metzler matrices by considering their similarity to nonnegative and Metzler Hessenberg matrices. It is shown that for dimensions n 3, there always exists a subset of nonnegative matrices that are not similar to a nonnegative Hessenberg form, which in case of n = 3 also provides a complete characterization of all such matrices. For Metzler matrices, we further establish that they are similar to Metzler Hessenberg matrices if n 4. In particular, this provides the first standard form for controllable third order continuous-time positive systems via a positive controller-Hessenberg form. Finally, we present an example which illustrates why this result is not easily transferred to discrete-time positive systems. While many of our supplementary results are proven in general, it remains an open question if Metzler matrices of dimensions n 5 remain similar to Metzler Hessenberg matrices.


2021 ◽  
Vol 88 (1) ◽  
Author(s):  
Antoine Gautier ◽  
Matthias Hein ◽  
Francesco Tudisco

AbstractWe analyze the global convergence of the power iterates for the computation of a general mixed-subordinate matrix norm. We prove a new global convergence theorem for a class of entrywise nonnegative matrices that generalizes and improves a well-known results for mixed-subordinate $$\ell ^p$$ ℓ p matrix norms. In particular, exploiting the Birkoff–Hopf contraction ratio of nonnegative matrices, we obtain novel and explicit global convergence guarantees for a range of matrix norms whose computation has been recently proven to be NP-hard in the general case, including the case of mixed-subordinate norms induced by the vector norms made by the sum of different $$\ell ^p$$ ℓ p -norms of subsets of entries.


2021 ◽  
Vol 37 ◽  
pp. 256-271
Author(s):  
Zhi Chen ◽  
Zelin Zhu ◽  
Jiawei Li ◽  
Lizhen Yang ◽  
Lei Cao

Transportation matrices are $m\times n$ nonnegative matrices with given row sum vector $R$ and column sum vector $S$. All such matrices form the convex polytope $\mathcal{U}(R,S)$ which is called a transportation polytope and its extreme points have been classified. In this article, we consider a new class of convex polytopes $\Delta(\bar{R},\bar{S},\sigma)$ consisting of certain transportation polytopes satisfying that the sum of all elements is $\sigma$, and the row and column sum vectors are dominated componentwise by the given positive vectors $\bar{R}$ and $\bar{S}$, respectively. We characterize the extreme points of $\Delta(\bar{R},\bar{S},\sigma)$. Moreover, we give the minimal term rank and maximal permanent of $\Delta(\bar{R},\bar{S},\sigma)$.


Author(s):  
D.B. Janse van Rensburg ◽  
M. van Straaten ◽  
F. Theron ◽  
C. Trunk

2021 ◽  
Vol 109 (3-4) ◽  
pp. 435-444
Author(s):  
V. N. Razzhevaikin ◽  
E. E. Tyrtyshnikov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document