scholarly journals General Purpose Image Tampering Detection using Convolutional Neural Network and Local Optimal Oriented Pattern (LOOP)

2021 ◽  
Vol 12 (2) ◽  
pp. 13-32
Author(s):  
Ali Ahmad Aminu ◽  
Nwojo Nnanna Agwu

Digital image tampering detection has been an active area of research in recent times due to the ease with which digital image can be modified to convey false or misleading information. To address this problem, several studies have proposed forensics algorithms for digital image tampering detection. While these approaches have shown remarkable improvement, most of them only focused on detecting a specific type of image tampering. The limitation of these approaches is that new forensic method must be designed for each new manipulation approach that is developed. Consequently, there is a need to develop methods capable of detecting multiple tampering operations. In this paper, we proposed a novel general purpose image tampering scheme based on CNNs and Local Optimal Oriented Pattern (LOOP) which is capable of detecting five types of image tampering in both binary and multiclass scenarios. Unlike the existing deep learning techniques which used constrained pre-processing layers to suppress the effect of image content in order to capture image tampering traces, our method uses LOOP features, which can effectively subdue the effect image content, thus, allowing the proposed CNNs to capture the needed features to distinguish among different types of image tampering. Through a number of detailed experiments, our results demonstrate that the proposed general purpose image tampering method can achieve high detection accuracies in individual and multiclass image tampering detections respectively and a comparative analysis of our results with the existing state of the arts reveals that the proposed model is more robust than most of the exiting methods.

2020 ◽  
Author(s):  
Ziyue Xiang ◽  
Daniel Ernesto Acuna

Abstract Background: Scientific image tampering is a problem that affects not only authors but also the general perception of the research community. Although previous researchers have developed methods to identify tampering in natural images, these methods may not thrive under the scientific setting as scientific images have different statistics, format, quality, and intentions. Methods: We propose a scientific-image specific tampering detection method based on noise inconsistencies, which is capable of learning and generalizing to different fields of science. We train and test our method on a new dataset of manipulated western blot and microscopy imagery, which aims at emulating problematic images in science. Results: With an average AUC score of 0.927 and an average F1 score of 0.770, it is shown that our method can detect various types of image manipulation in different scenarios robustly. It outperforms other existing general-purpose image tampering detection schemes. Conclusions: The experiment results shows that our method is capable of detecting manipulations in scientific images in a more reliable manner. We discuss applications beyond these two types of images and suggest next steps for making detection of problematic images a systematic step in peer review and science in general. Keywords: Scientific images; Digital image forensics; Noise inconsistency; Scientific image manipulation dataset


Sign in / Sign up

Export Citation Format

Share Document