scholarly journals Analysis and attribution of total column ozone changes over the Tibetan Plateau during 1979–2017

2020 ◽  
Vol 20 (14) ◽  
pp. 8627-8639 ◽  
Author(s):  
Yajuan Li ◽  
Martyn P. Chipperfield ◽  
Wuhu Feng ◽  
Sandip S. Dhomse ◽  
Richard J. Pope ◽  
...  

Abstract. Various observation-based datasets have confirmed positive zonal mean column ozone trends at midlatitudes as a result of the successful implementation of the Montreal Protocol. However, there is still uncertainty about the longitudinal variation of these trends and the direction and magnitude of ozone changes at low latitudes. Here, we use the extended Copernicus Climate Change Service (C3S) dataset (1979–2017) to investigate the long-term variations in total column ozone (TCO) over the Tibetan Plateau (TP) for different seasons. We use piecewise linear trend (PWLT) and equivalent effective stratospheric chlorine loading (EESC)-based multivariate regression models with various proxies to attribute the influence of dynamical and chemical processes on the TCO variability. We also compare the seasonal behaviour of the relative total ozone low (TOL) over the TP with the zonal mean at the same latitude. Both regression models show that the TP column ozone trends change from negative trends from 1979 to 1996 to small positive trends from 1997 to 2017, although the later positive trend based on PWLT is not statistically significant. The wintertime positive trend starting from 1997 is larger than that in summer, but both seasonal TP recovery rates are smaller than the zonal means over the same latitude band. For TP column ozone, both regression models suggest that the geopotential height at 150 hPa (GH150) is a more suitable and realistic dynamical proxy compared to a surface temperature proxy used in some previous studies. Our analysis also shows that the wintertime GH150 plays an important role in determining summertime TCO over the TP through persistence of the ozone signal. For the zonal mean column ozone at this latitude, the quasi-biennial oscillation (QBO) is nonetheless the dominant dynamical proxy. We also use a 3-D chemical transport model to diagnose the contributions of different proxies for the TP region. The role of GH150 variability is illustrated by using two sensitivity experiments with repeating dynamics of 2004 and 2008. The simulated ozone profiles clearly show that wintertime TP ozone concentrations are largely controlled by tropics to midlatitude pathways, whereas in summer variations associated with tropical processes play an important role. These model results confirm that the long-term trends of TCO over the TP are dominated by different processes in winter and summer. The different TP recovery rates relative to the zonal means at the same latitude band are largely determined by wintertime dynamical processes.

2019 ◽  
Author(s):  
Yajuan Li ◽  
Martyn P. Chipperfield ◽  
Wuhu Feng ◽  
Sandip S. Dhomse ◽  
Richard J. Pope ◽  
...  

Abstract. We use the ozone dataset from the Copernicus Climate Change Service (C3S) during 1979–2017 to investigate the long-term variations of the total column ozone (TCO) and the relative total ozone low (TOL) over the Tibetan Plateau (TP) during different seasons. Based on various regression models, the wintertime TCO over the TP decreases overall during 1979–2017 with ongoing decreases since 1997. We perform multivariate regression analysis to quantify the influence of dynamical and chemical processes responsible for the long-term TCO variability over the TP. We use both piecewise linear trend (PWLT) and equivalent effective stratospheric chlorine loading (EESC)-based regression models that include explanatory variables such as the 11-year solar cycle, quasi-biennial oscillation (QBO) at 30 hPa and 10 hPa and the geopotential height (GH) at 150 hPa. The 150 hPa GH is found to be a major dynamical contributor to the total ozone variability (8 %) over the TP in wintertime. We also find strong correlation between TCO in DJF and the following JJA, indicating that negative/positive anomalies in the wintertime build up persist into summer. We also use the TOMCAT/SLIMCAT 3-D chemical transport model to investigate the contributions of different factors to the ozone variations over the TP. Using identical regression model on simulated TCO time series, we obtain consistent results with C3S-based data. We perform two sensitivity experiments with repeating dynamics of 2004 and 2008 to further study the role that the GH at 150 hPa plays in the ozone variations over the TP. The GH differences between the two years show an obvious, negative centre near 150 hPa over the TP in DJF. Composite analysis show that GH fluctuations associated with Inter Tropical Convergence Zone, ENSO events or Walker circulation play a key role in controlling TCO variability in the lower stratosphere.


Tellus B ◽  
2014 ◽  
Vol 66 (1) ◽  
pp. 23415 ◽  
Author(s):  
Jiankai Zhang ◽  
Wenshou Tian ◽  
Fei Xie ◽  
Hongying Tian ◽  
Jiali Luo ◽  
...  

Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
pp. 622-635 ◽  
Author(s):  
Wenshou Tian ◽  
Martyn Chipperfield ◽  
Qian Huang

Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
Author(s):  
Wenshou Tian ◽  
Martyn Chipperfield ◽  
Qian Huang

2019 ◽  
Author(s):  
Yajuan Li ◽  
Martyn P. Chipperfield ◽  
Wuhu Feng ◽  
Sandip S. Dhomse ◽  
Richard J. Pope ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1275
Author(s):  
Saleha Al-Kallas ◽  
Motirh Al-Mutairi ◽  
Heshmat Abdel Basset ◽  
Abdallah Abdeldym ◽  
Mostafa Morsy ◽  
...  

In this work, analysis of the variability of total column ozone (TCO) over the Kingdom of Saudi Arabia (KSA) has been conducted during the 1979–2020 period based on the ECMWF-ERA5 dataset. It is found that the highest values of TCO appear in the spring and winter months especially over north KSA, while the lowest values of TCO occur in the autumn months. The highest values of the coefficient of variation (COV) for TCO occur in winter and spring as they gradually decrease southward, while the lowest COV values appear in summer and autumn. The Mann–Kendall test indicates that the positive trend values are dominant for the annual and seasonal TCO values over KSA, and they gradually increase southward. The study of long-term variability of annual TCO at KSA stations shows negative trend values are the dominant behavior during the 1979–2004 period, while positive trend values are the dominant behavior during the 2004–2020 period. The Mann–Whitney test assessed the abrupt change of the annual TCO time series at 28 stations in KSA and confirmed that there is an abrupt change towards increasing values around 2000, 2005, and 2014. The climatological monthly mean of the ozone mass mixing ratio (OMR) is studied at three stations representing the north, middle, and south of KSA. The highest values of OMR are found in the layer between 20 and 4 hPa with the maximum in summer and early autumn, while the lowest values are found below 100 hPa.


2015 ◽  
Vol 8 (10) ◽  
pp. 4487-4505 ◽  
Author(s):  
K.-L. Chang ◽  
S. Guillas ◽  
V. E. Fioletov

Abstract. Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with the covariance-based kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to the covariance-based kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.


2013 ◽  
Vol 6 (6) ◽  
pp. 10081-10115 ◽  
Author(s):  
E. W. Chiou ◽  
P. K. Bhartia ◽  
R. D. McPeters ◽  
D. G. Loyola ◽  
M. Coldewey-Egbers ◽  
...  

Abstract. This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) SBUV(v8.6) profile total ozone, (ii) GTO(GOME-Type total ozone), and (iii) Ground-based total ozone data records covering the 16-yr overlap period (March 1996 through June 2011). Analyses are conducted based on area weighted zonal means for (0–30° S), (0–30° N), (50–30° S), and (30–60° N). It has been found that on average, the differences in monthly zonal mean total ozone vary between −0.32 to 0.76 % and are well within 1%. For "GTO minus SBUV", the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.58 to 0.66% and 2.83 to 3.82% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.40 to 0.59% and 2.19 to 3.53%. The standard deviations and ranges of the differences "Ground-based minus SBUV" regarding both monthly zonal means and anomalies are larger by a factor of 1.4 to 2.9 in comparison to "GTO minus SBUV". The Ground-based zonal means, while show no systematic differences, demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences "GTO minus SBUV" and "Ground-based minus SBUV" are found to vary between −0.04 and 0.12% yr−1 (−0.11 and 0.31 DU yr−1). These negligibly small trends have provided strong evidence that there are no significant time dependent differences among these multi-year total ozone data records. Analyses of the deviations from pre-1980 level indicate that for the overlap period of 1996 to 2010, all three data records show gradual recovery at (30–60° N) from −5% in 1996 to −2% in 2010. The corresponding recovery at (50–30° S) is not as obvious until after 2006.


2015 ◽  
Vol 8 (4) ◽  
pp. 3967-4009 ◽  
Author(s):  
K.-L. Chang ◽  
S. Guillas ◽  
V. E. Fioletov

Abstract. Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.


Sign in / Sign up

Export Citation Format

Share Document