scholarly journals Supplementary material to "A Relaxed Eddy Accumulation (REA) LOPAP-System for Flux Measurements of Nitrous Acid (HONO)"

Author(s):  
Lisa von der Heyden ◽  
Walter Wißdorf ◽  
Ralf Kurtenbach ◽  
Jörg Kleffmann
2021 ◽  
Author(s):  
Lisa von der Heyden ◽  
Walter Wißdorf ◽  
Ralf Kurtenbach ◽  
Jörg Kleffmann

Abstract. In the present study a Relaxed Eddy Accumulation (REA) system for the quantification of vertical fluxes of nitrous acid (HONO) was developed and tested. The system is based on a three-channel-LOPAP instrument, for which two channels are used for the updrafts and downdrafts, respectively, and a third one for the correction of chemical interferences. The instrument is coupled to a REA gas inlet, for which an ultrasonic anemometer controls two fast magnetic valves to probe the two channels of the LOPAP instrument depending on the vertical wind direction. A software (PyREA) was developed, which controls the valves and measurement cycles, which regularly alternates between REA-, zero- and parallel ambient measurements. In addition, the assignment of the updrafts and downdrafts to the physical LOPAP channels is periodically alternated, to correct for differences in the interferences of the different air masses. During the study, only small differences of the interferences were identified for the updrafts and downdrafts excluding significant errors when using only one interference channel. In laboratory experiments, high precision of the two channels and the independence of the dilution corrected HONO concentrations on the length of the valve switching periods were demonstrated. A field campaign was performed in order to test the new REA-LOPAP system at the TROPOS monitoring station in Melpitz, Germany. HONO fluxes in the range of −4·1013 molecules m−2 s−1 (deposition) to +1.0·1014 molecules m−2 s−1 (emission) were obtained. A typical diurnal variation of the HONO fluxes was observed with low, partly negative fluxes during night-time and higher positive fluxes around noon. After an intensive rain period the positive HONO emissions during daytime were continuously increasing, which was explained by the drying of the upper most ground surfaces. Similar to other campaigns, the highest correlation of the HONO flux was observed with the product of the NO2 photolysis frequency and the NO2 concentration (J(NO2)·[NO2]), which implies a HONO formation by photosensitized conversion of NO2 on organic surfaces, like e.g. humic acids. Other postulated HONO formation mechanisms are also discussed, but are ranked being of minor importance for the present field campaign.


2019 ◽  
Vol 264 ◽  
pp. 104-113 ◽  
Author(s):  
Andrew J. Nelson ◽  
Nebila Lichiheb ◽  
Sotiria Koloutsou-Vakakis ◽  
Mark J. Rood ◽  
Mark Heuer ◽  
...  

1993 ◽  
Vol 66 (4) ◽  
pp. 341-355 ◽  
Author(s):  
E. Pattey ◽  
R. L. Desjardins ◽  
P. Rochette

2019 ◽  
Author(s):  
Leigh R. Crilley ◽  
Louisa J. Kramer ◽  
Bin Ouyang ◽  
Jun Duan ◽  
Wenqian Zhang ◽  
...  

2011 ◽  
Vol 4 (10) ◽  
pp. 2093-2103 ◽  
Author(s):  
X. Ren ◽  
J. E. Sanders ◽  
A. Rajendran ◽  
R. J. Weber ◽  
A. H. Goldstein ◽  
...  

Abstract. A relaxed eddy accumulation (REA) system combined with a nitrous acid (HONO) analyzer was developed to measure atmospheric HONO vertical fluxes. The system consists of three major components: (1) a fast-response sonic anemometer measuring both vertical wind velocity and air temperature, (2) a fast-response controlling unit separating air motions into updraft and downdraft samplers by the sign of vertical wind velocity, and (3) a highly sensitive HONO analyzer based on aqueous long path absorption photometry that measures HONO concentrations in the updrafts and downdrafts. A dynamic velocity threshold (±0.5σw, where σw is a standard deviation of the vertical wind velocity) was used for valve switching determined by the running means and standard deviations of the vertical wind velocity. Using measured temperature as a tracer and the average values from two field deployments, the flux proportionality coefficient, β, was determined to be 0.42 ± 0.02, in good agreement with the theoretical estimation. The REA system was deployed in two ground-based field studies. In the California Research at the Nexus of Air Quality and Climate Change (CalNex) study in Bakersfield, California in summer 2010, measured HONO fluxes appeared to be upward during the day and were close to zero at night. The upward HONO flux was highly correlated to the product of NO2 and solar radiation. During the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX 2009) at Blodgett Forest, California in July 2009, the overall HONO fluxes were small in magnitude and were close to zero. Causes for the different HONO fluxes in the two different environments are briefly discussed.


2011 ◽  
Vol 4 (3) ◽  
pp. 4105-4130 ◽  
Author(s):  
X. Ren ◽  
J. E. Sanders ◽  
A. Rajendran ◽  
R. J. Weber ◽  
A. H. Goldstein ◽  
...  

Abstract. A relaxed eddy accumulation (REA) system combined with a nitrous acid (HONO) analyzer was developed to measure atmosperhic HONO vertical fluxes. The system consists of three major components: (1) a fast-response sonic anemometer measuring vertical wind velocity and air temperature, (2) a fast-response controlling unit separating air motions into updraft and downdraft samplers by the sign of vertical wind velocity, and (3) a highly sensitive HONO analyzer based on aqueous long path absorption photometry measuring HONO concentations in these updrafts and downdrafts. A dynamic velocity threshold (±0.5σw, where σw is a standard deviation of the vertical wind velocity) was used for valve switching determined by the running means and standard deviations of the vertical wind velocity. Using measured temperature as a tracer and the average values from two field deployments, the flux proportionality coefficient, β, was determined to be 0.42 ± 0.02, in good agreement with the theoretical estimation. The REA system was deployed in two ground-based field studies. In the California Research at the Nexus of Air Quality and Climate Change (CalNex) study in Bakersfield, California in summer 2010, measured HONO fluxes appeared to be upward during the day and were close to zero at night. The upward HONO flux was highly correlated to the product of NO2 and solar radiation. During the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX 2009) at Blodgett Forest, California in July 2009, the overall HONO fluxes were small in magnitude and were close to zero. Causes for the differences in HONO fluxes in the two different environments are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document