co2 flux
Recently Published Documents


TOTAL DOCUMENTS

1036
(FIVE YEARS 240)

H-INDEX

65
(FIVE YEARS 8)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 129
Author(s):  
Ziwei Yang ◽  
Kelong Chen ◽  
Fumei Liu ◽  
Zihan Che

Niaodao, a lakeside wetland, was used as the focus of this study to investigate the effect of rainfall changes on the greenhouse gas fluxes of wetland ecosystems. Wetland plots with different moisture characteristics (+25%, −25%, +75%, and −75% rainfall treatments and the control treatment (CK)) were constructed to observe in situ field greenhouse gas emissions at 11:00 and 15:00 (when the daily mean values were similar) in the growing season from May to August 2020 by static chamber–gas chromatography and to investigate the responses of wetland greenhouse gases to different rainfall treatments. The results showed the following: (1) The carbon dioxide (CO2) flux ranged from −49.409 to 374.548 mg·m−2·h−1. The mean CO2 emission flux was greater at 11:00 than at 15:00, and the +25% and +75% treatments exhibited substantially higher CO2 emissions. In addition, the CO2 flux showed a small peak at the beginning of the growing season when the temperature first started to rise. All treatments showed the effect of the CO2 source, and their effects were significantly different. (2) The methane (CH4) flux ranged from −213.839 to 330.976 µg·m−2·h−1 and exhibited an absorption state at 11:00 and an emission state at 15:00. The CH4 emission flux in August (the peak growing season) differed greatly between treatments and was significantly negatively correlated with the rainfall amount (p < 0.05). (3) The nitrous oxide (N2O) flux ranged from −10.457 to 16.878 µg·m−2·h−1 and exhibited a weak source effect throughout the growing season, but it was not significantly correlated with soil moisture; it was, however, negatively correlated with soil temperature. (4) The different treatments resulted in significant differences in soil physical and chemical properties (electrical conductivity, pH, total soil carbon, and total soil nitrogen). The rainfall enhancement treatments significantly improved soil physical and chemical properties.


2022 ◽  
Vol 14 (2) ◽  
pp. 312
Author(s):  
Iwona Wrobel-Niedzwiecka ◽  
Małgorzata Kitowska ◽  
Przemyslaw Makuch ◽  
Piotr Markuszewski

A feed-forward neural network (FFNN) was used to estimate the monthly climatology of partial pressure of CO2 (pCO2W) at a spatial resolution of 1° latitude by 1° longitude in the continental shelf of the European Arctic Sector (EAS) of the Arctic Ocean (the Greenland, Norwegian, and Barents seas). The predictors of the network were sea surface temperature (SST), sea surface salinity (SSS), the upper ocean mixed-layer depth (MLD), and chlorophyll-a concentration (Chl-a), and as a target, we used 2 853 pCO2W data points from the Surface Ocean CO2 Atlas. We built an FFNN based on three major datasets that differed in the Chl-a concentration data used to choose the best model to reproduce the spatial distribution and temporal variability of pCO2W. Using all physical–biological components improved estimates of the pCO2W and decreased the biases, even though Chl-a values in many grid cells were interpolated values. General features of pCO2W distribution were reproduced with very good accuracy, but the network underestimated pCO2W in the winter and overestimated pCO2W values in the summer. The results show that the model that contains interpolating Chl-a concentration, SST, SSS, and MLD as a target to predict the spatiotemporal distribution of pCO2W in the sea surface gives the best results and best-fitting network to the observational data. The calculation of monthly drivers of the estimated pCO2W change within continental shelf areas of the EAS confirms the major impact of not only the biological effects to the pCO2W distribution and Air-Sea CO2 flux in the EAS, but also the strong impact of the upper ocean mixing. A strong seasonal correlation between predictor and pCO2W seen earlier in the North Atlantic is clearly a yearly correlation in the EAS. The five-year monthly mean CO2 flux distribution shows that all continental shelf areas of the Arctic Ocean were net CO2 sinks. Strong monthly CO2 influx to the Arctic Ocean through the Greenland and Barents Seas (>12 gC m−2 day−1) occurred in the fall and winter, when the pCO2W level at the sea surface was high (>360 µatm) and the strongest wind speed (>12 ms−1) was present.


Author(s):  
Eka Widiawati Wijaya Kusuma ◽  
Azwar Maas ◽  
Sri Nuryani Hidayah Utami ◽  
Eni Maftuah

This study aims to assess the effect of rice husk biochar, raised beds, and chicken manure on the CO<sub>2</sub> flux and shallot production on peatland. This study adopted a factorial randomized block design with three factors and three replications. The P1 treatment was recommended by the Swamp Land Agricultural Research Institute by adding chicken manure (5 ton ha<sup>−1</sup>) and rice husk biochar (5 ton ha<sup>−1</sup>) while the P2 treatment was recommended by the Vegetable Research Institute by adding chicken manure (10 ton ha<sup>−1</sup>). The raised beds heights were 20 cm (A) and 30 cm (B). Variance analyses were applied to each observation variable and followed by Duncan's Multiple Range Test at a 5% level. The P1A treatment was the best in improving the shallot production up to 10.88 tons and producing the lowest CO<sub>2</sub> cumulative flux up to 0.158 ton ha<sup>-1</sup> season<sup>-1</sup>.


2021 ◽  
Author(s):  
Livio Ruggiero ◽  
Alessandra Sciarra ◽  
Adriano Mazzini ◽  
Fabio Florindo ◽  
Gary Wilson ◽  
...  

Abstract McMurdo Dry Valleys comprise 10% of the ice-free soil surface areas in Antarctica. Permafrost stability plays an important role in C-cycle as it potentially stores considerable quantities of greenhouse gases. While the geomorphology of the Dry Valleys reflects a long history of changing climate conditions, comparison with the rapidly warming Northern polar region suggests that future climate and ecosystems may change more rapidly from permafrost degradation. In Austral summer 2019/2020 a comprehensive sampling of soil gases and CO2 flux measurements was undertaken in the Taylor Valley, with the aims to identify potential presence of soil gases in the active layer. The results obtained show high concentrations of CH4, CO2, He and an increasing CO2 flux rate. We identify the likely source of the gas to be from dissolved gases in deep brine moving from inland (potentially underneath the Antarctic Ice Sheet) to the coast at depth beneath the permafrost layer.


2021 ◽  
Author(s):  
Hongxing He ◽  
Tim Moore ◽  
Elyn R. Humphreys ◽  
Peter M. Lafleur ◽  
Nigel T. Roulet

Abstract. The carbon (C) dynamics of northern peatlands are sensitive to hydrological changes owing to ecohydrological feedback. We quantified and evaluated the impact of water level variations in a beaver pond (BP) on the CO2 flux dynamics of an adjacent, raised Sphagnum – shrub-dominated bog in southern Canada. We applied the CoupModel to the Mer Bleue bog, where the hydrological, energy and CO2 fluxes have been measured continuously for over 20 years. The lateral flow from the bog to the BP was estimated by the hydraulic gradient between the peatland and the BP's water level and the vertical profile of peat hydraulic conductivity. The model outputs were compared with the measured hydrological components, CO2 flux and energy flux data (1998–2019). CoupModel was able to reproduce the measured data well. The simulation shows that variation in the BP water level (naturally occurring or due to management) influenced the bog net ecosystem exchange of CO2 (NEE). Over 1998–2004, the BP water level was 0.75 to 1.0 m lower than during 2017–2019. Simulated net CO2 uptake was 55 g C m−2 yr−1 lower during 1998–2004 compared to 2017–2019 when there was no BP disturbance, which was similar to the differences in measured NEE between those periods. Peatland annual NEE was well correlated with water table depth within the bog, and NEE also shows a linear relation with the water level at the BP, with a slope of −120 g CO2-C m−2 yr−1 m−1. The current modelling predicts the bog may switch from CO2 sink to source when the BP water levels drop lower than ~ 1.7 m below the peat surface at the eddy covariance tower, 250 m from the BP. This study highlights the importance of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake function of northern peatlands.


Geology ◽  
2021 ◽  
Author(s):  
Marco Bonini

Earthquakes can trigger increased degassing in hydrogeological systems. Many of these systems return to preseismic conditions after months, but sometimes postseismic degassing lasts for years. The factors controlling such long-lasting degassing are poorly known. I explored the potential role of diverse triggering mechanisms (i.e., dynamic and static stress changes, volumetric strain) for three large earthquakes that induced postseismic degassing (the Wenchuan [China], Maule [Chile], and Gorkha [Nepal] earthquakes). The lessons from this study suggest that hydrogeological systems can respond to earthquakes in various ways, and different causal mechanisms can play a role. Persistent increased CO2 flux from hot springs has been documented after the Gorkha earthquake. These hot springs had their feeder systems dominantly unclamped, suggesting that sufficiently large normal stress changes may sustain late postseismic degassing. The results of this study are twofold: (1) they show a spatial correlation between unclamping stress and increased gas flow, and (2) they provide an explanation for protracted increased degassing.


Author(s):  
Zihao Man ◽  
Shengquan Che ◽  
Changkun Xie ◽  
Ruiyuan Jiang ◽  
Anze Liang ◽  
...  

The interactions between CO2 flux, an important component of ecosystem carbon flux, and climate change vary significantly among different ecosystems. In this research, the inter-annual variation characteristics of ecosystem respiration (RE), gross ecosystem exchange (GEE), and net ecosystem exchange (NEE) were explored in the temperate grassland (TG) of Xilinhot (2004–2010), the subtropical artificial coniferous forest (SACF) of Qianyanzhou (2003–2010), and the tropical rain forest (TRF) of Xishuangbanna (2003–2010). The main factors of climate change affecting ecosystem CO2 flux were identified by redundancy analysis, and exponential models and temperature indicators were constructed to consider the relationship between climate change and CO2 flux. Every year from 2003 to 2010, RE and GEE first increased and then decreased, and NEE showed no significant change pattern. TG was a carbon source, whereas SACF and TRF were carbon sinks. The influence of air temperature on RE and GEE was greater than that of soil temperature, but the influence of soil moisture on RE and GEE was greater than that of air moisture. Compared with moisture and photosynthetically active radiation, temperature had the greatest impact on CO2 flux and the exponential model had the best fitting effect. In TG and SACF, the average temperature was the most influential factor, and in TRF, the accumulated temperature was the most influential factor. These results provide theoretical support for mitigating and managing climate change and provide references for achieving carbon neutrality.


Author(s):  
Fernando Ayala-Niño ◽  
Yolanda Maya-Delgado ◽  
Enrique Troyo-Diéguez ◽  
Pedro P. Garcillán

2021 ◽  
Author(s):  
Christian Rödenbeck ◽  
Tim DeVries ◽  
Judith Hauck ◽  
Corinne Le Quéré ◽  
Ralph Keeling

Abstract. This study considers year-to-year and decadal variations as well as secular trends of the sea–air CO2 flux over the 1957–2020 period, as constrained by the pCO2 measurements from the SOCAT data base. In a first step, we relate interannual anomalies in ocean-internal carbon sources and sinks to local interannual anomalies in sea surface temperature (SST), the temporal changes of SST (dSST/dt), and squared wind speed (u2), employing a multi-linear regression. In the tropical Pacific, we find interannual variability to be dominated by dSST/dt, as arising from variations in the upwelling of colder and more carbon-rich waters into the mixed layer. In the eastern upwelling zones as well as in circumpolar bands in the high latitudes of both hemispheres, we find sensitivity to wind speed, compatible with the entrainment of carbon-rich water during wind-driven deepening of the mixed layer and wind-driven upwelling. In the Southern Ocean, the secular increase in wind speed leads to a secular increase in the carbon source into the mixed layer, with an estimated reduction of the sink trend in the range 17 to 42 %. In a second step, we combined the result of the multi-linear regression and an explicitly interannual pCO2-based additive correction into a “hybrid” estimate of the sea–air CO2 flux over the period 1957–2020. As a pCO2 mapping method, it combines (a) the ability of a regression to bridge data gaps and extrapolate into the early decades almost void of pCO2 data based on process-related observables and (b) the ability of an autoregressive interpolation to follow signals even if not represented in the chosen set of explanatory variables. The “hybrid” estimate can be applied as ocean flux prior for atmospheric CO2 inversions covering the whole period of atmospheric CO2 data since 1957.


Sign in / Sign up

Export Citation Format

Share Document