scholarly journals Holocene phototrophic community and anoxia dynamics in meromictic Lake Jaczno (NE Poland) using high-resolution hyperspectral imaging and HPLC data

2021 ◽  
Vol 18 (5) ◽  
pp. 1839-1856
Author(s):  
Stamatina Makri ◽  
Andrea Lami ◽  
Luyao Tu ◽  
Wojciech Tylmann ◽  
Hendrik Vogel ◽  
...  

Abstract. Global spread of hypoxia and less frequent mixing in lakes is a major growing environmental concern. Climate change and human impact are expected to increasingly deteriorate aquatic ecosystems. The study of processes and drivers of such changes in the past provides a great asset for prevention and remediation in the future. We used a multiproxy approach combining high-resolution bulk pigment data measured by hyperspectral imaging (HSI) with lower-resolution specific chlorophyll types and carotenoids measured by HPLC to examine Holocene trophic state changes and anoxia evolution in the meromictic Lake Jaczno, NE Poland. A redundancy analysis (RDA) including pollen-inferred vegetation cover, temperature and human impacts provides insight into specific conditions and drivers of changing trophic and redox states in the lake. Anoxic and sulfidic conditions were established in Lake Jaczno after initial basin infilling 9500 years ago. Until 6700 cal BP, lake trophy was relatively low, water turbidity was high and green sulfur bacteria (GSB) were abundant within the phototrophic community, suggesting a deep oxic–anoxic boundary and weak stratification. The period between 6700–500 cal BP is characterized by constantly increasing lake production and a gradual shift from GSB to purple sulfur bacteria (PSB), suggesting a shallower oxic–anoxic boundary and pronounced stratification. Yet, the presence of spheroidene and speroidenone in the sediments indicates intermittent anoxia. After 500 cal BP, increasing human impact, deforestation and intensive agriculture promoted lake eutrophication, with a shift to PSB dominance and establishment of permanent anoxia and meromixis. Our study unambiguously documents the legacy of human impact on processes determining eutrophication and anoxia.

2020 ◽  
Author(s):  
Stamatina Makri ◽  
Andrea Lami ◽  
Luyao Tu ◽  
Wojciech Tylmann ◽  
Hendrik Vogel ◽  
...  

Abstract. Global spread of hypoxia and altered mixing regimes in freshwater systems is a growing major environmental concern. Climate change and human impact are expected to increasingly deteriorate aquatic ecosystems. The study of processes and drivers of such changes in the past provides a great asset for prevention and remediation in the future. We used a multi-proxy approach combining high-resolution Hyperspectral Imaging (HSI) pigment data, with specific HPLC chlorophylls and carotenoids to examine Holocene trophic state changes and anoxia evolution in meromictic Lake Jaczno, NE Poland. A redundancy analysis RDA including pollen-inferred vegetation cover, temperature and human impacts provides insight into specific conditions and drivers of changing trophic and redox states in the lake. Anoxic and sulfidic conditions established in Lake Jaczno after initial basin infilling 9500 years ago. Until 6700 cal BP, lake trophy was relatively low, water turbidity was high, and green sulfur bacteria (GSB) were abundant within the phototrophic community, suggesting a deep oxic–anoxic boundary and weak stratification. The period between 6700–500 cal BP is characterized by constantly increasing lake production and a gradual shift from GSB to purple sulfur bacteria (PSB), suggesting a shallower oxic–anoxic boundary and pronounced stratification. Yet, the presence of spheroidene and speroidenone in the sediments indicates intermittent anoxia. After 500 cal BP, increasing human impact, deforestation and intensive agriculture promoted lake eutrophication, with a shift to PSB dominance and establishment of permanent anoxia and meromixis. Our study unambiguously documents the legacy of human impact on processes determining eutrophication and anoxia.


2011 ◽  
Vol 61 (7) ◽  
pp. 1682-1687 ◽  
Author(s):  
Sandro Peduzzi ◽  
Allana Welsh ◽  
Antonella Demarta ◽  
Paola Decristophoris ◽  
Raffaele Peduzzi ◽  
...  

Two isolates, designated CadH11T and Cad448T, representing uncultured purple sulfur bacterial populations H and 448, respectively, in the chemocline of Lake Cadagno, a crenogenic meromictic lake in Switzerland, were obtained using enrichment and isolation conditions that resembled those used for cultured members of the genus Thiocystis. Phenotypic, genotypic and phylogenetic analyses of these isolates confirmed their assignment to the genus Thiocystis. However, 16S rRNA gene sequence similarities of 98.2 % between CadH11T and Cad448T, and similarities of 97.7 and 98.5 %, respectively, with their closest cultured relative Thiocystis gelatinosa DSM 215T, as well as differences in DNA G+C content and carbon source utilization suggested that the isolates belonged to two distinct species. DNA–DNA hybridization of CadH11T and Cad448T with T. gelatinosa DSM 215T showed relatedness values of 46.4 and 60.8 %, respectively; the relatedness value between CadH11T and Cad448T was 59.2 %. Based on this evidence, strains CadH11T and Cad448T represent two novel species within the genus Thiocystis, for which the names Thiocystis chemoclinalis sp. nov. and Thiocystis cadagnonensis sp. nov. are proposed, respectively. The type strains of T. chemoclinalis sp. nov. and T. cadagnonensis sp. nov. are CadH11T ( = JCM 15112T  = KCTC 5954T) and Cad448T ( = JCM 15111T  = KCTC 15001T), respectively.


Author(s):  
Jörg Overmann ◽  
Ken J. Hall ◽  
Tom G. Northcote ◽  
Wolfgang Ebenhöh ◽  
M. Ann Chapman ◽  
...  

2020 ◽  
Vol 239 ◽  
pp. 106335 ◽  
Author(s):  
Stamatina Makri ◽  
Fabian Rey ◽  
Erika Gobet ◽  
Adrian Gilli ◽  
Willy Tinner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document