Particle energisation and transport at collisionless shocks propagating through turbulent media.

Author(s):  
Domenico Trotta ◽  
Francesco Valentini ◽  
David Burgess ◽  
Sergio Servidio

<p>Shocks and turbulence are spectacular, ubiquitous phenomena and are crucial ingredients to understand the production and transport of energetic particles in several astrophysical systems. The interaction between an oblique, supercritical shock and fully developed plasma turbulence is here investigated by means of kinetic simulations, for different turbulence amplitudes. The role of pre-existing, upstream turbulence on plasma transport is addressed using a novel technique, relying on the coarse-graining of the Vlasov equation. We find that the upstream transport properties strongly depend on upstream turbulence strength, with patterns modulated by the presence of turbulent structures. These results are relevant for a variety of systems, ranging from the Earth's bow shock interacting with solar wind turbulence, to the largest scales of radio relics in galaxy clusters.</p>

2021 ◽  
Vol 118 (21) ◽  
pp. e2026764118
Author(s):  
Domenico Trotta ◽  
Francesco Valentini ◽  
David Burgess ◽  
Sergio Servidio

The interaction of collisionless shocks with fully developed plasma turbulence is numerically investigated. Hybrid kinetic simulations, where a turbulent jet is slammed against an oblique shock, are employed to address the role of upstream turbulence on plasma transport. A technique, using coarse graining of the Vlasov equation, is proposed, showing that the particle transport strongly depends on upstream turbulence properties, such as strength and coherency. These results might be relevant for the understanding of acceleration and heating processes in space plasmas.


2018 ◽  
Vol 123 (1) ◽  
pp. 259-271 ◽  
Author(s):  
L. Mejnertsen ◽  
J. P. Eastwood ◽  
H. Hietala ◽  
S. J. Schwartz ◽  
J. P. Chittenden

2007 ◽  
Vol 25 (3) ◽  
pp. 785-799 ◽  
Author(s):  
A. Kis ◽  
M. Scholer ◽  
B. Klecker ◽  
H. Kucharek ◽  
E. A. Lucek ◽  
...  

Abstract. Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB) ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.


Author(s):  
Liudmila Rakhmanova ◽  
Maria Riazantseva ◽  
Georgy Zastenker

Crossing the Earth’s bow shock is known to crucially affect solar wind plasma including changes in turbulent cascade. The present review summarizes results of more than 15 years of experimental exploration into magnetosheath turbulence. Great contributions to understanding turbulence development inside the magnetosheath was made by means of recent multi-spacecraft missions. We introduce the main results provided by them together with first observations of the turbulent cascade based on direct plasma measurements by the Spektr-R spacecraft in the magnetosheath. Recent results on solar wind effects on turbulence in the magnetosheath are also discussed.


1980 ◽  
Vol 85 (A6) ◽  
pp. 2981 ◽  
Author(s):  
S.J. Bame ◽  
J.R. Asbridge ◽  
W.C. Feldman ◽  
J.T. Gosling ◽  
G. Paschmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document