ion distribution
Recently Published Documents


TOTAL DOCUMENTS

861
(FIVE YEARS 103)

H-INDEX

52
(FIVE YEARS 6)

Author(s):  
Amanda J. Carr ◽  
Sang Soo Lee ◽  
Ahmet Uysal

Abstract The structure of the electrical double layer (EDL) formed near graphene in aqueous environments strongly impacts its performance for a plethora of applications, including capacitive deionization. In particular, adsorption and organization of multivalent counterions near the graphene interface can promote nonclassical behaviors of EDL including overcharging followed by co-ion adsorption. In this paper, we characterize the EDL formed near an electrified graphene interface in dilute aqueous YCl3 solution using in situ high resolution x-ray reflectivity (also known as crystal truncation rod (CTR)) and resonant anomalous x-ray reflectivity (RAXR). These interface-specific techniques reveal the electron density profiles with molecular-scale resolution. We find that yttrium ions (Y3+) readily adsorb to the negatively charged graphene surface to form an extended ion profile. This ion distribution resembles a classical diffuse layer but with a significantly high ion coverage, i.e., 1 Y3+ per 11.4 ± 1.6 Å2, compared to the value calculated from the capacitance measured by cyclic voltammetry (1 Y3+ per ~240 Å2). Such overcharging can be explained by co-adsorption of chloride that effectively screens the excess positive charge. The adsorbed Y3+ profile also shows a molecular-scale gap (≥5 Å) from the top graphene surfaces, which is attributed to the presence of intervening water molecules between the adsorbents and adsorbates as well as the lack of inner-sphere surface complexation on chemically inert graphene. We also demonstrate controlled adsorption by varying the applied potential and reveal consistent Y3+ ion position with respect to the surface and increasing cation coverage with increasing the magnitude of the negative potential. This is the first experimental description of a model graphene-aqueous system with controlled potential and provides important insights into the application of graphene-based systems for enhanced and selective ion separations.


2021 ◽  
Author(s):  
Ingo Tischler ◽  
Florian Weik ◽  
Robert Kaufmann ◽  
Michael Kuron ◽  
Rudolf Weeber ◽  
...  

We introduce a scheme to simulate the spatial and temporal evolution of the densities of charged species, taking into account diffusion, thermal fluctuations, coupling to a carrier fluid, and chemical reactions. To this end, the diffusive fluxes in the electrokinetic model by Capuani et al. [1] are supplemented with thermal fluctuations. Chemical reactions are included via an additional source term in the mass balance equation. The diffusion-reaction model is then coupled to a solver for fluctuating hydrodynamics based on the lattice Boltzmann method. This combination is particularly useful for soft matter simulations, due to the ability to couple particles to the lattice-Boltzmann fluid. These could, e.g., be charged colloids or polymers, which then interact with an ion distribution. We describe one implementations based on the automatic code generation tools pystencils and lbmpy, and another one that is contained in the molecular dynamics package ESPResSo and that allows for an easy coupling of particles to the density fields. We validate our implementations by comparing to several known analytic results. Our method can be applied to coarse-grained catalysis problems as well as to many other multi-scale problems that require the coupling of explicit-particle simulations to flow fields, diffusion, and reaction problems in arbitrary geometries.


2021 ◽  
Vol 922 (2) ◽  
pp. 231
Author(s):  
Dandan Niu ◽  
Hao Gu ◽  
Jun Cui ◽  
Xiaoshu Wu ◽  
Mingyu Wu ◽  
...  

Abstract With the aid of the ion densities measured by the Neutral Gas and Ion Mass Spectrometer and the solar wind dynamic pressures measured by the Solar Wind Ion Analyzer on board the Mars Atmosphere and Volatile EvolutioN, we investigate the modulation of a sequence of ion species in the Martian topside ionosphere by the upstream solar wind condition. Almost all ion species, except for CO 2 + and OCOH+, are very sensitive to the variation of the solar wind condition, and their densities decrease with increasing solar wind dynamic pressure. The response of the topside ion distribution to the variation of the solar wind condition is also found to be remarkably related to the magnetic field orientation, in that the solar wind modulation occurs mainly over regions with near-horizontal field lines. These observations imply substantially enhanced outflow velocities for all ion species under high solar wind dynamic pressures when the ambient magnetic fields are near-horizontal.


2021 ◽  
Author(s):  
Luke Stagner ◽  
William W Heidbrink ◽  
Mirko Salewski ◽  
Asger Schou Jacobsen ◽  
Benedikt Geiger

Abstract Both fast ions and runaway electrons are described by distribution functions, the understanding of which are of critical importance for the success of future fusion devices such as ITER. Typically, energetic particle diagnostics are only sensitive to a limited subsection of the energetic particle phase-space which is often insufficient for model validation. However, previous publications show that multiple measurements of a single spatially localized volume can be used to reconstruct a distribution function of the energetic particle velocity-space by using the diagnostics' velocity-space weight functions, i.e. Velocity-space Tomography. In this work we use the recently formulated orbit weight functions to remove the restriction of spatially localized measurements and present Orbit Tomography, which is used to reconstruct the 3D phase-space distribution of all energetic particle orbits in the plasma. Through a transformation of the orbit distribution, the full energetic particle distribution function can be determined in the standard {energy,pitch,r,z}-space. We benchmark the technique by reconstructing the fast-ion distribution function of an MHD-quiescent DIII-D discharge using synthetic and experimental FIDA measurements. We also use the method to study the redistribution of fast ions during a sawtooth crash at ASDEX Upgrade using FIDA measurements. Finally, a comparison between the Orbit Tomography and Velocity-space Tomography is shown.


2021 ◽  
Vol 922 (2) ◽  
pp. L35
Author(s):  
A. F. A. Bott ◽  
L. Arzamasskiy ◽  
M. W. Kunz ◽  
E. Quataert ◽  
J. Squire

Abstract Using a hybrid-kinetic particle-in-cell simulation, we study the evolution of an expanding, collisionless, magnetized plasma in which strong Alfvénic turbulence is persistently driven. Temperature anisotropy generated adiabatically by the plasma expansion (and consequent decrease in the mean magnetic-field strength) gradually reduces the effective elasticity of the field lines, causing reductions in the linear frequency and residual energy of the Alfvénic fluctuations. In response, these fluctuations modify their interactions and spatial anisotropy to maintain a scale-by-scale “critical balance” between their characteristic linear and nonlinear frequencies. Eventually the plasma becomes unstable to kinetic firehose instabilities, which excite rapidly growing magnetic fluctuations at ion-Larmor scales. The consequent pitch-angle scattering of particles maintains the temperature anisotropy near marginal stability, even as the turbulent plasma continues to expand. The resulting evolution of parallel and perpendicular temperatures does not satisfy double-adiabatic conservation laws, but is described accurately by a simple model that includes anomalous scattering. Our results have implications for understanding the complex interplay between macro- and microscale physics in various hot, dilute, astrophysical plasmas, and offer predictions concerning power spectra, residual energy, ion-Larmor-scale spectral breaks, and non-Maxwellian features in ion distribution functions that may be tested by measurements taken in high-beta regions of the solar wind.


Author(s):  
Atul Kumar ◽  
Juan Francisco Caneses Marin

Abstract Laboratory plasmas in open magnetic geometries can be found in many different applications such as (1) Scrape-Of-Layer (SOL) and divertor regions in toroidal confinement fusion devices , (2) linear divertor simulators, (3) plasma-based thrusters and (4) magnetic mirrors. A common feature of these plasma systems is the need to resolve, in addition to velocity space, at least one physical dimension (e.g. along flux lines) to capture the relevant physics. In general, this requires a kinetic treatment. Fully kinetic Particle-In-Cell (PIC) simulations can be applied but at the expense of large computational effort. A common way to resolve this is to use a hybrid approach: kinetic ions and fluid electrons. In the present work, the development of a hybrid PIC computational tool suitable for open magnetic geometries is described which includes (1) the effect of non-uniform magnetic fields, (2) finite fully-absorbing boundaries for the particles and (3) volumetric particle sources. Analytical expressions for the momentum transport in the paraxial limit are presented with their underlying assumptions and are used to validate the results from the PIC simulations. A general method is described to construct discrete particle distribution functions in state of mirror-equilibrium. This method is used to obtain the initial state for the PIC simulation. Collisionless simulations in a mirror geometry are performed. Results show that the effect of magnetic compression is correctly described and momentum is conserved. The self-consistent electric field is calculated and is shown to modify the ion velocity distribution function in manner consistent with analytic theory. Based on this analysis, the ion distribution function is understood in terms of a loss-cone distribution and an isotropic Maxwell-Boltzmann distribution driven by a volumetric plasma source. Finally, inclusion of a Monte-Carlo based Fokker-Planck collision operator is discussed in the context of future work.


2021 ◽  
Author(s):  
Kartik Sau ◽  
Tamio Ikeshoji

Honeycomb layered oxides have attracted recent attention because of their rich crystal chemistry. However, the atomistic mechanisms of cationic transport in these structures remain vastly unexplored. Herein, we perform an extensive, systematic molecular dynamics study on Na2LiFeTeO6 using combined force-field and first-principles-based molecular dynamics simulations. We use are fined set of inter-atomic potential parameters of a previously reported potential model that represents various structural and transport properties of this recently reported promising material for all-solid-state battery applications. The present simulation study elucidates the roles of octahedral ordering and entropic contributions in Na+-ion distribution in the ab-plane. Our theoretical simulation also develops a ring-like atomistic diffusion mechanism and relevant atomistic energy barriers that help to understand the origin of fast ion conduction in honeycomb layered oxides.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6856
Author(s):  
Yongcheng Ji ◽  
Wenchao Liu ◽  
Yanmin Jia ◽  
Wei Li

In order to study the durability behavior of CFRP (carbon fiber reinforced polymer) reinforced concrete, three category specimens (plain, partially reinforced, and fully reinforced) were selected to investigate its performance variation concerning chlorine salt and salt-freeze coupled environment, which included the microscopic examination, the distribution of chloride ion concentration, and the compressive properties. By observing the microscopic of the specimens, the surface and cross-section corrosion deterioration was examined with increasing exposure time, and the physical behavior of CFRP and core concrete were discussed. The chloride ion diffusion test exerted that the chloride ion concentration in plain specimens is at least 200 times higher than that of fully reinforced specimens. Therefore, the effectiveness of CFRP reinforcement will be proved to effectively hinder the penetration of chloride ions into the core section. The formula of the time-dependent effect of concrete diffusivity with salt-freeze coupling effect was presented and its accuracy verified. A time-varying finite element model of chloride ion distribution was established by using ABAQUS software. It can be seen from the axial compression test that the strength loss rate of three categories of specimens was varied when subjected to the corrosion environment. Therefore, it is proved that CFRP reinforcement can effectively reduce the deterioration of the specimen’s mechanical properties caused by the exposure environment. The research results can provide technical reference for applying the CFRP strengthened concrete in a severe salt-freeze environment.


Author(s):  
Mario Podesta ◽  
Marina Gorelenkova ◽  
Nikolai N Gorelenkov ◽  
Roscoe B White ◽  
Phillip Bonofiglo ◽  
...  

Abstract The sawtooth instability is known for inducing transport and loss of energetic particles (EP), and for generating seed magnetic islands that can trigger tearing modes. Both effects degrade the overall plasma performance. Several theories and numerical models have been previously developed to quantify the expected EP transport caused by sawteeth, with various degrees of sophistication to differentiate the response of EPs at different energies and on different orbits (e.g. passing vs. trapped), although the analysis is frequently limited to a single time slice during a tokamak discharge. This work describes the development and initial benchmark of a framework that enables a reduced model for EP transport by sawteeth retaining the full EP phase-space information. The model, implemented in the ORBIT hamiltonian particle-following code, can be used either as a standalone post-processor taking input data from codes such as TRANSP, or as a preprocessor to compute transport coefficients that can be fed back to TRANSP for time-dependent simulations including the effects of sawteeth on energetic particles. The advantage of the latter approach is that the evolution of the EP distribution can be simulated quantitatively for sawtoothing discharges, thus enabling a more accurate modeling of sources, sinks and overall transport properties of EP and thermal plasma species for comprehensive physics studies that require detailed information of the fast ion distribution function and its evolution over time.


Author(s):  
Nikolai Nikolaevich Bakharev ◽  
I M Balachenkov ◽  
F V Chernyshev ◽  
Vasily K Gusev ◽  
Evgeniy Kiselev ◽  
...  

Abstract Active NPA measurements of the fast ion distribution using the neutral beam as an additional charge exchange target are discussed. Expressions for the calculation of the NPA signal based on the fast ion distribution and for the reconstruction of the fast ion distribution from the NPA signal are provided. Demonstration of the described approach is carried out on the Globus-M2 spherical tokamak, where a scanning system for the NPAs was recently installed. Main features of the active NPA application on Globus-M2 are considered. The energy and spatial distributions of fast deuterium ions at dedicated pitch angles are obtained and compared with the calculated ones. Key traits of the obtained distributions are considered and explained.


Sign in / Sign up

Export Citation Format

Share Document