the magnetic field
Recently Published Documents





Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Vyacheslav Klyukhin ◽  
Austin Ball ◽  
Felix Bergsma ◽  
Henk Boterenbrood ◽  
Benoit Curé ◽  

This review article describes the performance of the magnetic field measuring and monitoring systems for the Compact Muon Solenoid (CMS) detector. To cross-check the magnetic flux distribution obtained with the CMS magnet model, four systems for measuring the magnetic flux density in the detector volume were used. The magnetic induction inside the 6 m diameter superconducting solenoid was measured and is currently monitored by four nuclear magnetic resonance (NMR) probes installed using special tubes at a radius of 2.9148 m outside the barrel hadron calorimeter at ±0.006 m from the coil median XY-plane. Two more NRM probes were installed at the faces of the tracking system at Z-coordinates of −2.835 and +2.831 m and a radius of 0.651 m from the solenoid axis. The field inside the superconducting solenoid was precisely measured in 2006 in a cylindrical volume of 3.448 m in diameter and 7 m in length using ten three-dimensional (3D) B-sensors based on the Hall effect (Hall probes). These B-sensors were installed on each of the two propeller arms of an automated field-mapping machine. In addition to these measurement systems, a system for monitoring the magnetic field during the CMS detector operation has been developed. Inside the solenoid in the horizontal plane, four 3D B-sensors were installed at the faces of the tracking detector at distances X = ±0.959 m and Z-coordinates of −2.899 and +2.895 m. Twelve 3D B-sensors were installed on the surfaces of the flux-return yoke nose disks. Seventy 3D B-sensors were installed in the air gaps of the CMS magnet yoke in 11 XY-planes of the azimuthal sector at 270°. A specially developed flux loop technique was used for the most complex measurements of the magnetic flux density inside the steel blocks of the CMS magnet yoke. The flux loops are installed in 22 sections of the flux-return yoke blocks in grooves of 30 mm wide and 12–13 mm deep and consist of 7–10 turns of 45 wire flat ribbon cable. The areas enclosed by these coils varied from 0.3 to 1.59 m2 in the blocks of the barrel wheels and from 0.5 to 1.12 m2 in the blocks of the yoke endcap disks. The development of these systems and the results of the magnetic flux density measurements across the CMS magnet are presented and discussed in this review article.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 630
Tomasz Chady ◽  
Ryszard D. Łukaszuk ◽  
Krzysztof Gorący ◽  
Marek J. Żwir

This paper proposes and experimentally investigates a novel nondestructive testing method for ferromagnetic elements monitoring, the Magnetic Recording Method (MRM). In this method, the inspected element must be magnetized in a strictly defined manner before operation. This can be achieved using an array of permanent magnets arranged to produce a quasi-sinusoidal magnetization path. The magnetic field caused by the original residual magnetization of the element is measured and stored for future reference. After the operation or loading, the magnetic field measurement is repeated. Analysis of relative changes in the magnetic field (for selected components) allows identifying applied stress. The proposed research methodology aims to provide information on the steel structure condition unambiguously and accurately. An interpretation of the results without referring to the original magnetization is also possible but could be less accurate. The method can be used as a standard technique for NDT (Non-Destructive Testing) or in structural health monitoring (SHM) systems.

2022 ◽  
Xu Meng ◽  
Z H Wang ◽  
Dengke Zhang

Abstract In the future application of nuclear fusion, the liquid metal flows are considered to be an attractive option of the first wall of the Tokamak which can effectively remove impurities and improve the confinement of plasma. Moreover, the flowing liquid metal can solve the problem of the corrosion of the solid first wall due to high thermal load and particle discharge. In the magnetic confinement fusion reactor, the liquid metal flow experiences strong magnetic and electric, fields from plasma. In the present paper, an experiment has been conducted to explore the influence of electric and magnetic fields on liquid metal flow. The direction of electric current is perpendicular to that of the magnetic field direction, and thus the Lorentz force is upward or downward. A laser profilometer (LP) based on the laser triangulation technique is used to measure the thickness of the liquid film of Galinstan. The phenomenon of the liquid column from the free surface is observed by the high-speed camera under various flow rates, intensities of magnetic field and electric field. Under a constant external magnetic field, the liquid column appears at the position of the incident current once the external current exceeds a critical value, which is inversely proportional to the magnetic field. The thickness of the flowing liquid film increases with the intensities of magnetic field, electric field, and Reynolds number. The thickness of the liquid film at the incident current position reaches a maximum value when the force is upward. The distribution of liquid metal in the channel presents a parabolic shape with high central and low marginal. Additionally, the splashing, i.e., the detachment of liquid metal is not observed in the present experiment, which suggests a higher critical current for splashing to occur.

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 248
Gennady Mesyats ◽  
Vladislav Rostov ◽  
Konstantin Sharypov ◽  
Valery Shpak ◽  
Sergey Shunailov ◽  

The structure of the emission surface of a cold tubular cathode and electron beam was investigated as a function of the magnetic field in the coaxial diode of the high-current accelerator. The runaway mode of magnetized electrons in atmospheric air enabled registering the instantaneous structure of activated field-emission centers at the cathode edge. The region of air pressure (about 3 Torr) was determined experimentally and via analysis, where the explosive emission mechanism of the appearance of fast electrons with energies above 100 keV is replaced by the runaway electrons in a gas.

S. Hosseinzadeh ◽  
Kh. Hosseinzadeh ◽  
A. Hasibi ◽  
D.D. Ganji

In this paper, the flow of non-Newtonian blood fluid with nanoparticles inside a vessel with a porous wall in presence of a magnetic field have been investigated. This study aimed to investigate various parameters such as magnetic field and porosity on velocity, temperature, and concentration profiles. In this research, three different models (Vogel, Reynolds and Constant) for viscosity have been used as an innovation. The governing equations are solved by Akbari-Ganji's Method (AGM) analytical method and the Finite Element Method (FEM) is used to better represent the phenomena in the vessel. The results show that increasing the Gr number, porosity and negative pressure increase the blood velocity and increasing the magnetic field intensity decrease the blood velocity.

Yunuen Cervantes ◽  
Simon Duane ◽  
Hugo Bouchard

Abstract With the integration of MRI-linacs to the clinical workflow, the understanding and characterization of detector response in reference dosimetry in magnetic fields are required. The magnetic field perturbs the electron fluence (Fe), and the degree of perturbation depends on the irradiation conditions and the detector type. This work evaluates the magnetic field impact on the electron fluence spectra in several detectors to provide a deeper understanding of detector response in these conditions. Monte Carlo calculations of Fe are performed in six detectors (solid-state: PTW60012 and PTW60019, ionization chambers: PTW30013, PTW31010, PTW31021, and PTW31022) placed in water and irradiated by an Elekta Unity 7 MV FFF photon beam with small and reference fields, at 0 T and 1.5 T. Three chamber-axis orientations are investigated: parallel or perpendicular (two possibilities: FL towards the stem or the tip) to the magnetic field and perpendicular to the beam. One orientation for the solid-state detector is studied: parallel to the beam and perpendicular to the magnetic field. Additionally, Fe spectra are calculated in modified detector geometries to identify the underlying physical mechanisms behind the fluence perturbations. The total Fe is reduced up to 1.24% in the farmer chamber, at 1.5 T, in the parallel orientation. The interplay between the gyration radius and the farmer chamber cavity length significantly affects Fe in the perpendicular orientation; the total fluence varies up to 5.12% in magnetic fields. For the small-cavity chambers, the maximal variation in total Fe is 0.19%, for the reference field, in the parallel orientation. . In contrast, significant small-field effects occur; the total Fe is reduced between 9.86% to 14.50% at 1.5T (with respect to 0T) depending on the orientation. The magnetic field strongly impacted the solid-state detectors in both field sizes, probably due to the high-density extracameral components. The maximal reductions of total Fe are 15.06±0.09% (silicon) and 16.00±0.07% (microDiamond). This work provides insights into detector response in magnetic fields by illustrating the interplay between several factors causing dosimetric perturbation effects: 1) chamber and magnetic field orientation, 2) cavity size and shape, 3) extracameral components, 4) air gaps and their asymmetry, 5) electron energy. Low-energy electron trajectories are more susceptible to change in magnetic fields, and generally, they are associated with detector response perturbation.

2022 ◽  
Vol 7 (1) ◽  
Gyanendra Singh ◽  
Claudio Guarcello ◽  
Edouard Lesne ◽  
Dag Winkler ◽  
Tord Claeson ◽  

AbstractTwo-dimensional SrTiO3-based interfaces stand out among non-centrosymmetric superconductors due to their intricate interplay of gate-tunable Rashba spin-orbit coupling and multi-orbital electronic occupations, whose combination theoretically prefigures various forms of non-standard superconductivity. By employing superconducting transport measurements in nano-devices we present strong experimental indications of unconventional superconductivity in the LaAlO3/SrTiO3 interface. The central observations are the substantial anomalous enhancement of the critical current by small magnetic fields applied perpendicularly to the plane of electron motion, and the asymmetric response with respect to the magnetic field direction. These features cannot be accommodated within a scenario of canonical spin-singlet superconductivity. We demonstrate that the experimental observations can be described by a theoretical model based on the coexistence of Josephson channels with intrinsic phase shifts. Our results exclude a time-reversal symmetry breaking scenario and suggest the presence of anomalous pairing components that are compatible with inversion symmetry breaking and multi-orbital physics.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 130
Konstantinos N. Gourgouliatos ◽  
Davide De Grandis ◽  
Andrei Igoshev

Neutron stars host the strongest magnetic fields that we know of in the Universe. Their magnetic fields are the main means of generating their radiation, either magnetospheric or through the crust. Moreover, the evolution of the magnetic field has been intimately related to explosive events of magnetars, which host strong magnetic fields, and their persistent thermal emission. The evolution of the magnetic field in the crusts of neutron stars has been described within the framework of the Hall effect and Ohmic dissipation. Yet, this description is limited by the fact that the Maxwell stresses exerted on the crusts of strongly magnetised neutron stars may lead to failure and temperature variations. In the former case, a failed crust does not completely fulfil the necessary conditions for the Hall effect. In the latter, the variations of temperature are strongly related to the magnetic field evolution. Finally, sharp gradients of the star’s temperature may activate battery terms and alter the magnetic field structure, especially in weakly magnetised neutron stars. In this review, we discuss the recent progress made on these effects. We argue that these phenomena are likely to provide novel insight into our understanding of neutron stars and their observable properties.

Mingming Meng ◽  
Ying Liu ◽  
Chong Chen ◽  
Rui Wang

Abstract The S-shaped magnetic structure in the solar wind formed by the twisting of magnetic field lines is called a switchback, whose main characteristics are the reversal of the magnetic field and the significant increase in the solar wind radial velocity. We identify 242 switchbacks during the first two encounters of Parker Solar Probe (PSP). Statistics methods are applied to analyze the distribution and the rotation angle and direction of the magnetic field rotation of the switchbacks. The diameter of switchbacks is estimated with a minimum variance analysis (MVA) method based on the assumption of a cylindrical magnetic tube. We also make a comparison between switchbacks from inside and the boundary of coronal holes. The main conclusions are as follows: (1) the rotation angles of switchbacks observed during the first encounter seem larger than those of the switchbacks observed during the second encounter in general; (2) the tangential component of the velocity inside the switchbacks tends to be more positive (westward) than in the ambient solar wind; (3) switchbacks are more likely to rotate clockwise than anticlockwise, and the number of switchbacks with clockwise rotation is 1.48 and 2.65 times of those with anticlockwise rotation during the first and second encounters, respectively; (4) the diameter of switchbacks is about 10^5 km on average and across five orders of magnitude (10^3 – 10^7 km).

Yasunori OHTSU ◽  
Godai Sakata ◽  
Julian Schulze ◽  
Takeshi Yasunaga ◽  
Yasuyuki Ikegami

Abstract Radial profiles of the ion saturation current are measured in a ring-shaped magnetized radio-frequency plasma sputtering process with two facing cylindrical ZnO targets including Al2O3 (2% wt.). The profile has a non-uniform shape with a peak whose position corresponds to the target near the electrode due to the effect of the magnetic field distribution. It becomes uniform at large distances between the substrate and a target (d st ≥ 50 mm). The radial profile of the resistivity of the Al-ZnO (AZO) films deposited on a polycarbonate plate at Ar gas pressure of 0.27 Pa is uniform at about 10-3 Ω·cm for d st ≥ 50 mm. The films deposited at various positions and room-substrate-temperature also show a good crystallinity based on an X-ray diffraction peak of about 33.95 - 34.44°. The grains exhibit a preferential orientation along the [002] axis with its size ranging from 18.15 to 28.17 nm. A higher transmittance of 95.6 % in the visible region is also obtained.

Sign in / Sign up

Export Citation Format

Share Document