The SERGHEI model and its core shallow water solver

Author(s):  
Mario Morales-Hernández ◽  
Ilhan Özgen-Xian ◽  
Daniel Caviedes-Voullième

<p>The Simulation Environment for Geomorphology, Hydrodynamics and Ecohydrology in Integrated form (SERGHEI) model framework is a multi-dimensional, multi-domain and multi-physics model framework. It is designed to provide a modelling environment for hydrodynamics, ecohydrology, morphodynamics, and, importantly, interactions and feedbacks among such processes, at different levels of complexity and across spatiotemporal scales. SERGHEI is in essence, a terrestrial landscape simulator based on a hydrodynamics core, designed with an outlook towards Earth System Modelling applications. Consequently, efficient mathematical and numerical formulations, as well as HPC implementations are at its core. SERGHEI intends to enable large scale and high resolution problems, which will allow to acknowledge and simulate emergent behaviours rising from the small-scale interactions and feedbacks between different environmental processes, that often manifest at larger spatiotemporal scales.</p><p>At the core of the technical innovation in SERGHEI is its HPC implementation, built from scratch on the Kokkos programming model and C++ library. This approach facilitates portability from personal computers to Tier-0 HPC systems, including GPU-based and heterogeneous systems. This is achieved by relying on Kokkos handling memory models, thread management and computational policies for the required backend programming models. In particular, using Kokkos, SERGHEI can be compiled for multiple CPUs and GPUs using a combination of OpenMP, MPI, and CUDA.</p><p>In this contribution, we introduce the SERGHEI model framework, and specially its first operational module for solving shallow water equations (SERGHEI-SWE). This module is designed to be applicable to hydrological, environmental and consequently Earth System Modelling problems, but also to classical engineering problems such as fluvial or urban flood modelling. We also provide a first showcase of the applicability of the SERGHEI-SWE solver to several well-known benchmarks, and the performance of the solver on large-scale hydrological simulation and flooding problems. We also show and discuss the scaling properties of the solver (on several Tier-0 systems)  and sketch out its current and future development.</p>

Author(s):  
Sophie Valcke ◽  
René Redler ◽  
Reinhard Budich

2021 ◽  
Author(s):  
David Hall

<p>This talk gives an overview of cutting-edge artificial intelligence applications and techniques for the earth-system sciences. We survey the most important recent contributions in areas including extreme weather, physics emulation, nowcasting, medium-range forecasting, uncertainty quantification, bias-correction, generative adversarial networks, data in-painting, network-HPC coupling, physics-informed neural nets, and geoengineering, amongst others. Then, we describe recent AI breakthroughs that have the potential to be of greatest benefit to the geosciences. We also discuss major open challenges in AI for science and their potential solutions. This talk is a living document, in that it is updated frequently, in order to accurately relect this rapidly changing field.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bochen Wang ◽  
Qiyuan Qian ◽  
Zheyi Tan ◽  
Peng Zhang ◽  
Aizhi Wu ◽  
...  

This study investigates a multidepot heterogeneous vehicle routing problem for a variety of hazardous materials with risk analysis, which is a practical problem in the actual industrial field. The objective of the problem is to design a series of routes that minimize the total cost composed of transportation cost, risk cost, and overtime work cost. Comprehensive consideration of factors such as transportation costs, multiple depots, heterogeneous vehicles, risks, and multiple accident scenarios is involved in our study. The problem is defined as a mixed integer programming model. A bidirectional tuning heuristic algorithm and particle swarm optimization algorithm are developed to solve the problem of different scales of instances. Computational results are competitive such that our algorithm can obtain effective results in small-scale instances and show great efficiency in large-scale instances with 70 customers, 30 vehicles, and 3 types of hazardous materials.


2013 ◽  
Author(s):  
Wolfgang Hiller ◽  
Reinhard Budich ◽  
René Redler

Author(s):  
Kamal Puri ◽  
René Redler ◽  
Reinhard Budich

Author(s):  
Matthew J. Fairman ◽  
Andrew R. Price ◽  
Gang Xue ◽  
Marc Molinari ◽  
Denis A. Nicole ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document