generative adversarial networks
Recently Published Documents





2022 ◽  
Vol 54 (8) ◽  
pp. 1-49
Abdul Jabbar ◽  
Xi Li ◽  
Bourahla Omar

The Generative Models have gained considerable attention in unsupervised learning via a new and practical framework called Generative Adversarial Networks (GAN) due to their outstanding data generation capability. Many GAN models have been proposed, and several practical applications have emerged in various domains of computer vision and machine learning. Despite GANs excellent success, there are still obstacles to stable training. The problems are Nash equilibrium, internal covariate shift, mode collapse, vanishing gradient, and lack of proper evaluation metrics. Therefore, stable training is a crucial issue in different applications for the success of GANs. Herein, we survey several training solutions proposed by different researchers to stabilize GAN training. We discuss (I) the original GAN model and its modified versions, (II) a detailed analysis of various GAN applications in different domains, and (III) a detailed study about the various GAN training obstacles as well as training solutions. Finally, we reveal several issues as well as research outlines to the topic.

2022 ◽  
Vol 166 ◽  
pp. 108473
G. Tsialiamanis ◽  
M.D. Champneys ◽  
N. Dervilis ◽  
D.J. Wagg ◽  
K. Worden

2022 ◽  
Vol 13 (2) ◽  
pp. 1-23
Divya Saxena ◽  
Jiannong Cao

Spatio-temporal (ST) data is a collection of multiple time series data with different spatial locations and is inherently stochastic and unpredictable. An accurate prediction over such data is an important building block for several urban applications, such as taxi demand prediction, traffic flow prediction, and so on. Existing deep learning based approaches assume that outcome is deterministic and there is only one plausible future; therefore, cannot capture the multimodal nature of future contents and dynamics. In addition, existing approaches learn spatial and temporal data separately as they assume weak correlation between them. To handle these issues, in this article, we propose a stochastic spatio-temporal generative model (named D-GAN) which adopts Generative Adversarial Networks (GANs)-based structure for more accurate ST prediction in multiple time steps. D-GAN consists of two components: (1) spatio-temporal correlation network which models spatio-temporal joint distribution of pixels and supports a stochastic sampling of latent variables for multiple plausible futures; (2) a stochastic adversarial network to jointly learn generation and variational inference of data through implicit distribution modeling. D-GAN also supports fusion of external factors through explicit objective to improve the model learning. Extensive experiments performed on two real-world datasets show that D-GAN achieves significant improvements and outperforms baseline models.

2022 ◽  
Vol 13 (2) ◽  
pp. 1-23
Han Bao ◽  
Xun Zhou ◽  
Yiqun Xie ◽  
Yingxue Zhang ◽  
Yanhua Li

Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article, we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition, we redesign the training objective to learn the estimated mobility changes from historical average levels to mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate real-world human mobility responses than prior methods, including COVID-GAN.

2022 ◽  
Vol 136 ◽  
pp. 103554
Xiping Wu ◽  
Hongyu Yang ◽  
Hu Chen ◽  
Qinzhi Hu ◽  
Haoliang Hu

2022 ◽  
Vol 72 ◽  
pp. 101308
Aamir Wali ◽  
Zareen Alamgir ◽  
Saira Karim ◽  
Ather Fawaz ◽  
Mubariz Barkat Ali ◽  

2022 ◽  
Vol 27 (1) ◽  
pp. 68-78
Hongxia Deng ◽  
Yuefang Zhang ◽  
Ran Li ◽  
Chunxiang Hu ◽  
Zijian Feng ◽  

Sign in / Sign up

Export Citation Format

Share Document