How much Io material reaches Europa?

2020 ◽  
Author(s):  
Fran Bagenal ◽  
Vincent Dols ◽  
Edward Nerney ◽  
Frank Crary ◽  
Tim Cassidy

<p>The plasma interaction with Io’s atmosphere results in at least a ton per second of escaping neutrals. Most of these neutrals supply extended neutral clouds along Io's orbit  and eventually become ionized and accelerated to corotation with Jupiter, populating the Io plasma torus as well as spreading out to fill Jupiter’s vast magnetosphere. About half to two-thirds of the plasma torus ions charge-exchange with the extended neutral clouds  and leave the torus as energetic neutral atoms, passing Europa’s orbit. Energetic neutrals are also produced directly in the plasma-atmosphere interaction, escaping with sufficient speed to reach Europa’s orbit before being ionized. The iogenic ions that are accelerated to high energies in the middle magnetosphere ultimately move back inward, again crossing Europa’s orbit. We present estimates of the fluxes of these various iogenic populations and how much oxygen, sulfur and sodium might be hitting Europa.</p>

2020 ◽  
Author(s):  
Vincent Dols ◽  
Robert Johnson ◽  
Fran Bagenal

<p>The Io Torus plasma is mostly composed of singly and multi-charged S and O ions. These ions interact with the neutrals of Io’s atmosphere (S, O, SO<sub>2</sub> and SO) through symmetrical (i.e. O<sup>+</sup> + O => O + O<sup>+</sup>) and asymmetrical (i.e. S<sup>++</sup> + O => S + O<sup>++</sup>) charge-exchanges. Charge-exchange cross-sections were estimated in Johnson & Strobel, 1982 and McGrath & Johnson, 1989 at 60 km/s (the plasma corotation velocity in Io’s frame), and are used in numerical simulations of the torus/neutral cloud interaction (i.e. Delamere and Bagenal, 2003).</p> <p>Dols et al., 2008 proposed numerical simulations of the multi-species chemistry interaction at Io using these cross-sections at 60 km/s. The plasma/atmosphere interaction at Io is strong and the flow velocity and ion temperature are drastically reduced close to Io (v < 10 km/s). Thus, velocity-dependent charge-exchange cross-sections are critical for such numerical simulations and their effect on the local plasma and neutral supply at Io should be explored.</p> <p>We propose to revisit the calculation of ion/neutral charge-exchange cross-sections following Johnson & Strobel, 1982’s approach for plasma velocities relevant to the local interaction at Io (V=10-120 km/s). More sophisticated calculations were proposed in McGrath & Johnson, 1989 but both publications offered very few details about their procedure.</p> <p>We will illustrate the effect of using velocity-depend charge-exchange cross-sections in numerical simulations of the multi-species plasma/atmosphere interaction at Io.</p> <p>More generally, this presentation aimed at providing an incentive for the community to expand the work of McGrath & Johnson, 1989.</p> <p> </p> <p><em>Johnson & Strobel, Charge-exchange in the Io torus and exosphere, JGR, 87,1982</em></p> <p><em>McGrath & Johnson, Charge exchange cross sections for the Io plasma torus, JGR, 94, 1989</em></p> <p><em>Delamere & Bagenal, Modeling variability of plasma conditions in the Io torus, JGR, 108, 2003</em></p> <p><em>Dols, Delamere, Bagenal, Kurth, Paterson, A multi-species chemistry model of Io’s local interaction with the plasma torus, JGR, 113, 2008</em></p>


2001 ◽  
Vol 106 (A2) ◽  
pp. 1931-1937 ◽  
Author(s):  
A. M. Jorgensen ◽  
M. G. Henderson ◽  
E. C. Roelof ◽  
G. D. Reeves ◽  
H. E. Spence

2010 ◽  
Vol 76 (6) ◽  
pp. 919-927
Author(s):  
DASTGEER SHAIKH ◽  
B. DASGUPTA

AbstractWe have developed an analytic model to describe coupling of plasma and neutral fluids in the partially ionized heliosphere plasma medium. The sources employed in our analytic model are based on a κ-distribution as opposed to the Maxwellian distribution function. Our model uses the κ-distribution to analytically model the energetic neutral atoms that result in the heliosphere partially ionized plasma from charge exchange with the protons and subsequently produce a long tail, which is otherwise not describable by the Maxwellian distribution. We present our analytic formulation and describe major differences in the sources emerging from these two distinct distributions.


1993 ◽  
Vol 20 (16) ◽  
pp. 1735-1738 ◽  
Author(s):  
R. E. Johnson ◽  
Melissa McGrath

Nature ◽  
1987 ◽  
Vol 327 (6122) ◽  
pp. 492-495 ◽  
Author(s):  
Dyfrig Jones

1975 ◽  
Vol 30 (3) ◽  
pp. 345-384 ◽  
Author(s):  
D. Joynson ◽  
E. Leader ◽  
B. Nicolescu ◽  
C. Lopez

Sign in / Sign up

Export Citation Format

Share Document