scholarly journals The El Niño event of 2015–16: Climate anomalies and their impact on groundwater resources in East and Southern Africa

2019 ◽  
Author(s):  
Seshagirirao Kolusu
2019 ◽  
Vol 23 (3) ◽  
pp. 1751-1762 ◽  
Author(s):  
Seshagiri Rao Kolusu ◽  
Mohammad Shamsudduha ◽  
Martin C. Todd ◽  
Richard G. Taylor ◽  
David Seddon ◽  
...  

Abstract. The impact of climate variability on groundwater storage has received limited attention despite widespread dependence on groundwater as a resource for drinking water, agriculture and industry. Here, we assess the climate anomalies that occurred over Southern Africa (SA) and East Africa, south of the Equator (EASE), during the major El Niño event of 2015–2016, and their associated impacts on groundwater storage, across scales, through analysis of in situ groundwater piezometry and Gravity Recovery and Climate Experiment (GRACE) satellite data. At the continental scale, the El Niño of 2015–2016 was associated with a pronounced dipole of opposing rainfall anomalies over EASE and Southern Africa, north–south of ∼12∘ S, a characteristic pattern of the El Niño–Southern Oscillation (ENSO). Over Southern Africa the most intense drought event in the historical record occurred, based on an analysis of the cross-scale areal intensity of surface water balance anomalies (as represented by the standardised precipitation evapotranspiration index – SPEI), with an estimated return period of at least 200 years and a best estimate of 260 years. Climate risks are changing, and we estimate that anthropogenic warming only (ignoring changes to other climate variables, e.g. precipitation) has approximately doubled the risk of such an extreme SPEI drought event. These surface water balance deficits suppressed groundwater recharge, leading to a substantial groundwater storage decline indicated by both GRACE satellite and piezometric data in the Limpopo basin. Conversely, over EASE during the 2015–2016 El Niño event, anomalously wet conditions were observed with an estimated return period of ∼10 years, likely moderated by the absence of a strongly positive Indian Ocean zonal mode phase. The strong but not extreme rainy season increased groundwater storage, as shown by satellite GRACE data and rising groundwater levels observed at a site in central Tanzania. We note substantial uncertainties in separating groundwater from total water storage in GRACE data and show that consistency between GRACE and piezometric estimates of groundwater storage is apparent when spatial averaging scales are comparable. These results have implications for sustainable and climate-resilient groundwater resource management, including the potential for adaptive strategies, such as managed aquifer recharge during episodic recharge events.


2018 ◽  
Author(s):  
Seshagiri Rao Kolusu ◽  
Mohammad Shamsudduha ◽  
Martin C. Todd ◽  
Richard G. Taylor ◽  
David Seddon ◽  
...  

Abstract. The impact of climate variability on groundwater storage has received limited attention despite widespread dependence on groundwater as a resource for drinking water, agriculture and industry. Here, we assess the climate anomalies that occurred over Southern Africa (SA) and East Africa, south of the equator (EASE), during the major El Niño event of 2015–16, and their associated impacts on groundwater storage, across scales, through analysis of in situ groundwater piezometry and GRACE satellite data. At the continental scale, the El Niño of 2015–16 was associated with a pronounced dipole of opposing rainfall anomalies over EASE and Southern Africa, north/south of ~12° S, a characteristic pattern of ENSO. Over Southern Africa the most intense drought event in the historical record occurred, based on an analysis of the cross-scale areal intensity of surface water balance anomalies (as represented by the Standardised Precipitation-Evapotranspiration Index, SPEI), with an estimated return period of at least 200 years and a best estimate of 260 years. Climate risks are changing and we estimate that anthropogenic warming only (ignoring changes to other climate variables e.g. precipitation) has approximately doubled the risk of such an extreme SPEI drought event. These surface water balance deficits suppressed groundwater recharge, leading to a substantial groundwater storage decline indicated by both GRACE satellite and piezometric data in the Limpopo basin. Conversely, over EASE during the 2015–16 El Niño event, anomalously wet conditions were observed with an estimated return period of ~10 years, likely moderated by the absence of a strongly positive Indian Ocean Zonal Mode phase. The strong but not extreme rainy season increased groundwater storage as shown by satellite GRACE data and rising groundwater levels observed at a site in central Tanzania. We note substantial uncertainties in separating groundwater from total water storage in GRACE data and show that consistency between GRACE and piezometric estimates of groundwater storage is apparent when spatial averaging scales are comparable. These results have implications for sustainable and climate-resilient groundwater resource management, including the potential for adaptive strategies, such as managed aquifer recharge during episodic recharge events.


2019 ◽  
Author(s):  
Kurt C. Solander ◽  
Brent D. Newman ◽  
Alessandro Carioca de Aruajo ◽  
Holly R. Barnard ◽  
Z. Carter Berry ◽  
...  

Abstract. The 2015–16 El Niño event ranks as one of the most severe on record in terms of the magnitude and extent of sea surface temperature (SST) anomalies generated in the tropical Pacific Ocean. Corresponding global impacts on the climate were expected to rival, or even surpass, those of the 1997–98 severe El Niño event, which had SST anomalies that were similar in size. However, the 2015–16 event failed to meet expectations for hydrologic change in many areas, including those expected to receive well above normal precipitation. To better understand how climate anomalies during an El Niño event impact soil moisture, we investigate changes in soil moisture in the humid tropics (between ±25°) during the three most recent super El Niño events of 1982–83, 1997–98, and 2015–16, using data from the Global Land Data Assimilation System (GLDAS). First, we validate the soil moisture estimates from GLDAS through comparison with in-situ observations obtained from 16 sites across five continents, showing an r2 of 0.54. Next, we apply a k-means cluster analysis to the soil moisture estimates during the El Niño mature phase, resulting in four groups of clustered data. The strongest and most consistent decreases in soil moisture occur in the Amazon basin and maritime southeast Asia, while the most consistent increases occur over east Africa. In addition, we compare changes in soil moisture to both precipitation and evapotranspiration, which showed a lack of agreement in the direction of change between these variables and soil moisture most prominently in the southern Amazon basin, Sahel and mainland southeast Asia. Our results can be used to improve estimates of spatiotemporal differences in El Niño impacts on soil moisture in tropical hydrology and ecosystem models at multiple scales.


2020 ◽  
Vol 24 (5) ◽  
pp. 2303-2322
Author(s):  
Kurt C. Solander ◽  
Brent D. Newman ◽  
Alessandro Carioca de Araujo ◽  
Holly R. Barnard ◽  
Z. Carter Berry ◽  
...  

Abstract. The 2015–2016 El Niño event ranks as one of the most severe on record in terms of the magnitude and extent of sea surface temperature (SST) anomalies generated in the tropical Pacific Ocean. Corresponding global impacts on the climate were expected to rival, or even surpass, those of the 1997–1998 severe El Niño event, which had SST anomalies that were similar in size. However, the 2015–2016 event failed to meet expectations for hydrologic change in many areas, including those expected to receive well above normal precipitation. To better understand how climate anomalies during an El Niño event impact soil moisture, we investigate changes in soil moisture in the humid tropics (between ±25∘) during the three most recent super El Niño events of 1982–1983, 1997–1998 and 2015–2016, using data from the Global Land Data Assimilation System (GLDAS). First, we use in situ soil moisture observations obtained from 16 sites across five continents to validate and bias-correct estimates from GLDAS (r2=0.54). Next, we apply a k-means cluster analysis to the soil moisture estimates during the El Niño mature phase, resulting in four groups of clustered data. The strongest and most consistent decreases in soil moisture occur in the Amazon basin and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. In addition, we compare changes in soil moisture to both precipitation and evapotranspiration, which showed a lack of agreement in the direction of change between these variables and soil moisture most prominently in the southern Amazon basin, the Sahel and mainland southeastern Asia. Our results can be used to improve estimates of spatiotemporal differences in El Niño impacts on soil moisture in tropical hydrology and ecosystem models at multiple scales.


Sign in / Sign up

Export Citation Format

Share Document