scholarly journals TOWARDS CONTINUOUS CONTROL FOR MOBILE ROBOT NAVIGATION: A REINFORCEMENT LEARNING AND SLAM BASED APPROACH

Author(s):  
K. A. A. Mustafa ◽  
N. Botteghi ◽  
B. Sirmacek ◽  
M. Poel ◽  
S. Stramigioli

<p><strong>Abstract.</strong> We introduce a new autonomous path planning algorithm for mobile robots for reaching target locations in an unknown environment where the robot relies on its on-board sensors. In particular, we describe the design and evaluation of a deep reinforcement learning motion planner with continuous linear and angular velocities to navigate to a desired target location based on deep deterministic policy gradient (DDPG). Additionally, the algorithm is enhanced by making use of the available knowledge of the environment provided by a grid-based SLAM with Rao-Blackwellized particle filter algorithm in order to shape the reward function in an attempt to improve the convergence rate, escape local optima and reduce the number of collisions with the obstacles. A comparison is made between a reward function shaped based on the map provided by the SLAM algorithm and a reward function when no knowledge of the map is available. Results show that the required learning time has been decreased in terms of number of episodes required to converge, which is 560 episodes compared to 1450 episodes in the standard RL algorithm, after adopting the proposed approach and the number of obstacle collision is reduced as well with a success ratio of 83% compared to 56% in the standard RL algorithm. The results are validated in a simulated experiment on a skid-steering mobile robot.</p>

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5493
Author(s):  
Junli Gao ◽  
Weijie Ye ◽  
Jing Guo ◽  
Zhongjuan Li

This paper proposes a novel incremental training mode to address the problem of Deep Reinforcement Learning (DRL) based path planning for a mobile robot. Firstly, we evaluate the related graphic search algorithms and Reinforcement Learning (RL) algorithms in a lightweight 2D environment. Then, we design the algorithm based on DRL, including observation states, reward function, network structure as well as parameters optimization, in a 2D environment to circumvent the time-consuming works for a 3D environment. We transfer the designed algorithm to a simple 3D environment for retraining to obtain the converged network parameters, including the weights and biases of deep neural network (DNN), etc. Using these parameters as initial values, we continue to train the model in a complex 3D environment. To improve the generalization of the model in different scenes, we propose to combine the DRL algorithm Twin Delayed Deep Deterministic policy gradients (TD3) with the traditional global path planning algorithm Probabilistic Roadmap (PRM) as a novel path planner (PRM+TD3). Experimental results show that the incremental training mode can notably improve the development efficiency. Moreover, the PRM+TD3 path planner can effectively improve the generalization of the model.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3837 ◽  
Author(s):  
Junjie Zeng ◽  
Rusheng Ju ◽  
Long Qin ◽  
Yue Hu ◽  
Quanjun Yin ◽  
...  

In this paper, we propose a novel Deep Reinforcement Learning (DRL) algorithm which can navigate non-holonomic robots with continuous control in an unknown dynamic environment with moving obstacles. We call the approach MK-A3C (Memory and Knowledge-based Asynchronous Advantage Actor-Critic) for short. As its first component, MK-A3C builds a GRU-based memory neural network to enhance the robot’s capability for temporal reasoning. Robots without it tend to suffer from a lack of rationality in face of incomplete and noisy estimations for complex environments. Additionally, robots with certain memory ability endowed by MK-A3C can avoid local minima traps by estimating the environmental model. Secondly, MK-A3C combines the domain knowledge-based reward function and the transfer learning-based training task architecture, which can solve the non-convergence policies problems caused by sparse reward. These improvements of MK-A3C can efficiently navigate robots in unknown dynamic environments, and satisfy kinetic constraints while handling moving objects. Simulation experiments show that compared with existing methods, MK-A3C can realize successful robotic navigation in unknown and challenging environments by outputting continuous acceleration commands.


Sign in / Sign up

Export Citation Format

Share Document