scholarly journals RESULTS OF RESEARCHES ON PHOTOGRAMMETRIC CALIBRATION OF THE SONY CYBER-SHOT DSC-RX1RM2 CAMERA

Author(s):  
S. A. Kadnichansky ◽  
M. B. Kurkov ◽  
V. M. Kurkov ◽  
A. G. Chibunichev ◽  
L. K. Trubina

Abstract. Results of researches of calibration of the SONY CYBER-SHOT DSC-RX1RM2 camera on the basis of the test field aerial survey are given in article. Researches showed that calibration using aerial survey of a calibration test field provides reliable result with a required accuracy. Recommendations about execution of aerial survey and about creation of an operational test field for photogrammetric calibration of the camera before execution of the specific project are made. When aerial survey is carried out with GNSS determination of coordinates of the perspective centers of aerial photos with RMS of coordinates no more than 0.08 m it is possible to use the self-calibration mode for photogrammetric network block adjustment without ground control points. At the same time accuracy of the end result of photogrammetric processing commensurable with an accuracy, achieved with ground control points, is provided.


Author(s):  
T. Kraft ◽  
M. Geßner ◽  
H. Meißner ◽  
M. Cramer ◽  
M. Gerke ◽  
...  

In this paper we present the further evaluation of DLR’s modular airborne camera system MACS-Micro for small unmanned aerial vehicle (UAV). The main focus is on standardized calibration procedures and on photogrammetric workflows. The current prototype consists of an industrial grade frame imaging camera with 12 megapixel resolutions and a compact GNSS/IMU solution which are operated by an embedded computing unit (CPU). The camera was calibrated once pre-flight and several times post-flight over a period of 5 month using a three dimensional test field. The verification of the radiometric quality of the acquired images has been done under controlled static conditions and kinematic conditions testing different demosaicing methods. The validation of MACS-Micro is done by comparing a traditional photogrammetric evaluation with the workflows of Agisoft Photoscan and Pix4D Mapper. The analyses are based on an aerial survey of an urban environment using precise ground control points and acquired GNSS observations. Aerial triangulations with different configuratrions of ground control points (GCP’s) had been calculated, comparing the results of using a camera self-calibration and introducing fixed interior orientation parameters for Agisoft and Pix4D. The results are promising concerning the metric characteristics of the used camera and achieved accuracies in this test case. Further aspects have to be evaluated by further expanded test scenarios.



Author(s):  
T. Kraft ◽  
M. Geßner ◽  
H. Meißner ◽  
M. Cramer ◽  
M. Gerke ◽  
...  

In this paper we present the further evaluation of DLR’s modular airborne camera system MACS-Micro for small unmanned aerial vehicle (UAV). The main focus is on standardized calibration procedures and on photogrammetric workflows. The current prototype consists of an industrial grade frame imaging camera with 12 megapixel resolutions and a compact GNSS/IMU solution which are operated by an embedded computing unit (CPU). The camera was calibrated once pre-flight and several times post-flight over a period of 5 month using a three dimensional test field. The verification of the radiometric quality of the acquired images has been done under controlled static conditions and kinematic conditions testing different demosaicing methods. The validation of MACS-Micro is done by comparing a traditional photogrammetric evaluation with the workflows of Agisoft Photoscan and Pix4D Mapper. The analyses are based on an aerial survey of an urban environment using precise ground control points and acquired GNSS observations. Aerial triangulations with different configuratrions of ground control points (GCP’s) had been calculated, comparing the results of using a camera self-calibration and introducing fixed interior orientation parameters for Agisoft and Pix4D. The results are promising concerning the metric characteristics of the used camera and achieved accuracies in this test case. Further aspects have to be evaluated by further expanded test scenarios.





Author(s):  
Chien-Hsun Chu ◽  
Kai-Wei Chiang

The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a novel method that uses ground control points to maintain the positioning accuracy of the MMS in GNSS denied environments. At last, this study analyses the performance of proposed method using about 20 check-points through DG process.



2020 ◽  
Vol 28 (3) ◽  
pp. 293-304
Author(s):  
Amr Elsheshtawy ◽  
Larisa A. Gavrilova ◽  
Anatoly N. Limonov ◽  
Mohamed Elshewy

The materials obtained from the unmanned aerial vehicle (UAV) are used to solve many problems, including large-scale mapping and monitoring of linear objects, as well as the ecological situation and monitoring of emergency situations. The promptly obtained photographic materials make it possible to reveal the consequences of man-made human impact associated with degradation of the soil cover, flooding of lands, salinization and pollution of the soil layer, and changes in the vegetation cover. Control points are used for absolute orientation of the generated models in the most projects of photogrammetric processing of aerial photos and images obtained from UAVs. In areas with low contour, before aerial survey, targeting is carried out in the required zones. The research is devoted to the study of the influence of the shape of ground targets on the accuracy of photogrammetric processing. It involved three different types of ground targets located on the land cover along the survey path at a distance not exceeding 1 m from each other. The targets were used as ground control points in the photogrammetric processing of the materials from the UAV. Two three-stripe photographic surveys of the 900 m long track were carried out: with UAV DJI PHANTOM 4 PRO camera FC6310 at a scale of 1:3400 and ground resolution of 1 cm and with the DJI Mavic PRO UAV camera FC220 at a scale of 1:12 700 and ground resolution of 2 cm. In both cases, the direction of flight is north - south, 36 targets were included in the photogrammetric processing. In the first case, 502 images were processed, in the second - 152. The photogrammetric processing for the orthophoto mosaic generation was carried out using the Agisoft Photo Scan Professional software. Four different contrasting sites in the study area were selected for the study: green grass, dry grass, clay, sand. Accuracy was assessed according to two criteria: 1) the degree of visualization of the target on the images; 2) the accuracy of the orthophoto mosaic, generated using various targets.



2020 ◽  
Vol 13 (12) ◽  
pp. 6111-6130
Author(s):  
Matthew T. Perks

Abstract. Accurately monitoring river flows can be challenging, particularly under high-flow conditions. In recent years, there has been considerable development of remote sensing techniques for the determination of river flow dynamics. Image velocimetry is one particular approach which has been shown to accurately reconstruct surface velocities under a range of hydro-geomorphic conditions. Building on these advances, a new software package, KLT-IV v1.0, has been designed to offer a user-friendly graphical interface for the determination of river flow velocity and river discharge using videos acquired from a variety of fixed and mobile platforms. Platform movement can be accounted for when ground control points and/or stable features are present or where the platform is equipped with a differential GPS device and inertial measurement unit (IMU) sensor. The application of KLT-IV v1.0 is demonstrated using two case studies at sites in the UK: (i) river Feshie and (ii) river Coquet. At these sites, footage is acquired from unmanned aerial systems (UASs) and fixed cameras. Using a combination of ground control points (GCPs) and differential GPS and IMU data to account for platform movement, image coordinates are converted to real-world distances and displacements. Flow measurements made with a UAS and fixed camera are used to generate a well-defined flow rating curve for the river Feshie. Concurrent measurements made by UAS and fixed camera are shown to deviate by < 4 % under high-flow conditions where maximum velocities exceed 3 m s−1. The acquisition of footage on the river Coquet using a UAS equipped with differential GPS and IMU sensors enabled flow velocities to be precisely reconstructed along a 180 m river reach. In-channel velocities of between 0.2 and 1 m s−1 are produced. Check points indicated that unaccounted-for motion in the UAS platform is in the region of 6 cm. These examples are provided to illustrate the potential for KLT-IV to be used for quantifying flow rates using videos collected from fixed or mobile camera systems.



2020 ◽  
Vol 92,2020 (92) ◽  
pp. 15-23
Author(s):  
O. L., Dorozhynskyy ◽  
◽  
I. Z. Kolb ◽  
L. V. Babiy ◽  
L. V. Dychko ◽  
...  

Aim. Determination of the elements of external spatial orientation of the surveying systems at the moment of image acquisition is the fundamental task in photogrammetry. Principally, this problem is solving in two ways. The first way is direct positioning and measuring of directions of camera optical axis in the geodetic space with the help of GNSS/INS equipment. The second way is the analytical solution of the problem using a set of reference information (often such information is a set of ground control points whose geodetic positions are known with sufficient accuracy and which are reliably recognised on aerial images of the photogrammetric block). The authors consider the task of providing reference and control information using the second approach, which has a number of advantages in terms of reliability and accuracy of determining the unknown image exterior orientation parameters. It is proposed to obtain additional images of ground control points by the method of their auxiliary aerial photography using an unmanned aerial vehicle (UAV) on a larger scale compared to the scale of the images of the photogrammetric block. The aim of the presented work is the implementation of the method of creating reference points and experimental confirmation of its effectiveness for photogrammetric processing. Methods and results. For the entire realization of the potential of the analytical way to determine the elements of external orientation of images, it is necessary to have a certain number of ground control points (GCP) and to keep the defined scheme of their location on the photogrammetric block. As the main source of input data authors use UAV aerial images of the terrain, which are obtained separately from the block of aerial survey, and have a better geometric resolution and which clearly depict the control reference points. Application of such auxiliary images gives the possibility of automated transferring of the position of ground control point into images of the main photogrammetric block. In our interpretation, these images of ground control points and their surroundings on the ground are called "control reference images". The basis of the work is to develop a method for obtaining the auxiliary control reference images and transferring of position of GCP depicted on them into aerial or space images of terrain by means of computer stereo matching. To achieve this goal, we have developed a processing method for the creation of control reference images of aerial image or a series of auxiliary multi-scale aerial images obtained by a drone from different heights above the reference point. The operator identifies and measures the GCP once on the auxiliary aerial image of the highest resolution. Then there is an automatic stereo matching of the control reference image in the whole series of auxiliary images in succession with a decrease in the resolution and, ultimately, directly with the aerial images of photogrammetric block. On this stage there are no recognition/cursor targeting by the human operator, and therefore there are no discrepancies, errors or mistakes related to it. In addition, if to apply fairly large size of control reference images, the proposed method can be used on a low-texture terrain, and therefore deal in many cases without the physical marking of points measured by GNSS method. And this is a way to simplify and reduce the cost of photogrammetric technology. The action of the developed method has been verified experimentally to provide the control reference information of the block of archival aerial images of the low-texture terrain. The results of the experimental approbation of the proposed method give grounds to assert that the method makes it possible to perform geodetic reference of photogrammetric projects more efficiently due to the refusal of the physical marking of the area before aerial survey. The proposed method can also be used to obtain the information for checking the quality of photogrammetric survey for provision of check points. The authors argue that the use of additional equipment - UAV of semi-professional class to obtain control reference images is economically feasible. Scientific novelty and practical relevance. The results of approbation of the "control reference image" method with obtaining stereo pairs of aerial images with vertical placement of the base are presented for the first time. There was implemented the study of the properties of such stereo pairs of aerial images to obtain images of reference points. The effectiveness of including reference images in the main block of the digital aerial triangulation network created on UAV’s images is shown.



Author(s):  
Chien-Hsun Chu ◽  
Kai-Wei Chiang

The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a novel method that uses ground control points to maintain the positioning accuracy of the MMS in GNSS denied environments. At last, this study analyses the performance of proposed method using about 20 check-points through DG process.



2020 ◽  
Author(s):  
Matthew T. Perks

Abstract. Accurately monitoring river flows can be challenging, particularly under high-flow conditions. In recent years, there has been considerable development of remote sensing techniques for the determination of river flow dynamics. Image velocimetry is one particular approach which has been shown to accurately reconstruct surface velocities under a range of hydro-geomorphic conditions. Building on these advances, a new software package, KLT-IV v1.0 has been designed to offer a user-friendly graphical interface for the determination of river flow velocity and river discharge using videos acquired from a variety of fixed and mobile platforms. Platform movement can be accounted for when ground control points and/or stable features are present, or where the platform is equipped with a differential GPS device and inertial measurement unit (IMU) sensor. The application of KLT-IV v1.0 is demonstrated using two case studies at sites in the UK: (i) River Feshie; and (ii) River Coquet. At these sites, footage is acquired from unmanned aerial systems (UAS) and fixed cameras. Using a combination of ground control points (GCPs), and differential GPS and IMU data to account for platform movement, image coordinates are converted to real world distances and displacements. Flow measurements made with a UAS and fixed camera are used to generate a well-defined flow rating curve for the River Feshie. Concurrent measurements made by UAS and fixed camera are shown to deviate by < 4 % under high-flow conditions where maximum velocities exceed 3 m s−1. The acquisition of footage on the River Coquet using a UAS equipped with differential GPS and IMU sensors enabled flow velocities to be precisely reconstructed along a 180 m river reach. In-channel velocities of between 0.2 and 1 m s−1 are produced. Check points indicated that unaccounted for motion in the UAS platform is in the region of 6 cm. These examples are provided to illustrate the potential for KLT-IV to be used for quantifying flow rates using videos collected from fixed, or mobile camera systems.



Sign in / Sign up

Export Citation Format

Share Document