high flow
Recently Published Documents


TOTAL DOCUMENTS

5407
(FIVE YEARS 2227)

H-INDEX

84
(FIVE YEARS 19)

2022 ◽  
Vol 263 ◽  
pp. 107454
Author(s):  
Rubens Duarte Coelho ◽  
Alex Nunes de Almeida ◽  
Jéfferson de Oliveira Costa ◽  
Diego José de Sousa Pereira

2022 ◽  
Vol 35 (13) ◽  
Author(s):  
Themistoklis Paraskevas ◽  
Eleousa Oikonomou ◽  
Maria Lagadinou ◽  
Vasileios Karamouzos ◽  
Nikolaos Zareifopoulos ◽  
...  

Introduction: Oxygen therapy remains the cornerstone for managing patients with severe SARS-CoV-2 infection and several modalities of non-invasive ventilation are used worldwide. High-flow oxygen via nasal canula is one therapeutic option which may in certain cases prevent the need of mechanical ventilation. The aim of this review is to summarize the current evidence on the use of high-flow nasal oxygen in patients with severe SARS-CoV-2 infection.Material and Methods: We conducted a systematic literature search of the databases PubMed and Cochrane Library until April 2021 using the following search terms: “high flow oxygen and COVID-19” and “high flow nasal and COVID-19’’.Results: Twenty-three articles were included in this review, in four of which prone positioning was used as an adjunctive measure. Most of the articles were cohort studies or case series. High-flow nasal oxygen therapy was associated with a reduced need for invasive ventilation compared to conventional oxygen therapy and led to an improvement in secondary clinical outcomes such as length of stay. The efficacy of high-flow nasal oxygen therapy was comparable to that of other non-invasive ventilation options, but its tolerability is likely higher. Failure of this modality was associated with increased mortality.Conclusion: High flow nasal oxygen is an established option for respiratory support in COVID-19 patients. Further investigation is required to quantify its efficacy and utility in preventing the requirement of invasive ventilation.


2022 ◽  
Vol 11 (2) ◽  
pp. 391
Author(s):  
Benedikt Schmid ◽  
Mirko Griesel ◽  
Anna-Lena Fischer ◽  
Carolina S. Romero ◽  
Maria-Inti Metzendorf ◽  
...  

Background: Acute respiratory failure is the most important organ dysfunction of COVID-19 patients. While non-invasive ventilation (NIV) and high-flow nasal cannula (HFNC) oxygen are frequently used, efficacy and safety remain uncertain. Benefits and harms of awake prone positioning (APP) in COVID-19 patients are unknown. Methods: We searched for randomized controlled trials (RCTs) comparing HFNC vs. NIV and APP vs. standard care. We meta-analyzed data for mortality, intubation rate, and safety. Results: Five RCTs (2182 patients) were identified. While it remains uncertain whether HFNC compared to NIV alters mortality (RR: 0.92, 95% CI 0.65–1.33), HFNC may increase rate of intubation or death (composite endpoint; RR 1.22, 1.03–1.45). We do not know if HFNC alters risk for harm. APP compared to standard care probably decreases intubation rate (RR 0.83, 0.71–0.96) but may have little or no effect on mortality (RR: 1.08, 0.51–2.31). Conclusions: Certainty of evidence is moderate to very low. There is no compelling evidence for either HFNC or NIV, but both carry substantial risk for harm. The use of APP probably has benefits although mortality appears unaffected.


2022 ◽  
Author(s):  
Amal Francis Sam ◽  
Anil Yogendra Yadav

Conventionally, oxygen is given at 4 to 6 L/min through nasal cannula for supplementation of oxygen. The FiO2 achieved through this can be up to 0.4. Flows more than this can cause dryness to the nasal mucosa without much increase in the FiO2. High-flow nasal cannula (HFNC) uses flow up to 60 L/min. Positive end-expiratory pressure is created in the nasopharynx and it is also conducted to the lower airways. Studies have shown HFNC improves washout of CO2 and decreases respiratory rate. Patient compliance also improves due to the comfort of the cannula compared to the non-invasive ventilation through a mask.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262462
Author(s):  
Guillaume Béraud ◽  
Jean-François Timsit ◽  
Henri Leleu

Remdesivir and dexamethasone are the only drugs providing reductions in the lengths of hospital stays for COVID-19 patients. We assessed the impacts of remdesivir on hospital-bed resources and budgets affected by the COVID-19 outbreak. A stochastic agent-based model was combined with epidemiological data available on the COVID-19 outbreak in France and data from two randomized control trials. Strategies involving treating with remdesivir only patients with low-flow oxygen and patients with low-flow and high-flow oxygen were examined. Treating all eligible low-flow oxygen patients during the entirety of the second wave would have decreased hospital-bed occupancy in conventional wards by 4% [2%; 7%] and intensive care unit (ICU)-bed occupancy by 9% [6%; 13%]. Extending remdesivir use to high-flow-oxygen patients would have amplified reductions in ICU-bed occupancy by up to 14% [18%; 11%]. A minimum remdesivir uptake of 20% was required to observe decreases in bed occupancy. Dexamethasone had effects of similar amplitude. Depending on the treatment strategy, using remdesivir would, in most cases, generate savings (up to 722€) or at least be cost neutral (an extra cost of 34€). Treating eligible patients could significantly limit the saturation of hospital capacities, particularly in ICUs. The generated savings would exceed the costs of medications.


2022 ◽  
Author(s):  
Thomas Laumon ◽  
Elie Courvalin ◽  
Geoffrey Dagod ◽  
Pauline Deras ◽  
Mehdi Girard ◽  
...  

Abstract Background: Optimal decarboxylation dose under extracorporeal respiratory support to ensure sufficient reduction of mechanical ventilation stress remains unclear and understudied. The aim of this study was to assess the interdependence of blood flow (BF) and gas flow (GF) in predicting CO2 removal and mechanical ventilation reduction (MVR) under extracorporeal respiratory support. Methods: All patients who benefited from veno-venous ECMO (HLS-maquet 7.0, 1.8 m²) and high-flow ECCO2R (HLS-maquet 5.0, 1.3 m²) in our intensive care unit over a period of 18 months were included. CO2 removal was calculated from inlet/outlet blood gases performed in clinical practice during the first 7 days of oxygenator use. The relationship between the BF × GF product and CO2 removal or MVR was studied using linear regression models. Results: Eighteen patients were analysed, corresponding to 24 oxygenators and 261 datasets. CO2 removal was 393 mL/min (IQR, 310–526 mL/min) for 1.8 m2 oxygenators and 179 mL/min (IQR, 165–235 mL/min) for 1.3 m2 oxygenators. The decarboxylation index was associated linearly with CO2 removal (R2 = 0.62 and R2 = 0.77 for the two oxygenators, respectively) and MVR (R2 = 0.72 and R2 = 0.62, respectively). Values in the range 20−30L2/min2 were associated with an MVR ratio between 38% and 58% for 1.8 m2 oxygenators, and between 37% and 55% for 1.3 m2 oxygenators. Conclusion: The decarboxylation index is a simple parameter to predict CO2 removal and MVR under extracorporeal respiratory support. A BF of 2 L2/min2 or more may be necessary to obtain a significant reduction of mechanical convection.Trial Registration: Being a retrospective study, no trial registration was made.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucy Huang ◽  
Adam Badenoch ◽  
Marthinus Vermeulen ◽  
Shahid Ullah ◽  
Charmaine Woods ◽  
...  

AbstractAirway surgery presents a unique environment for operating room fire to occur. This study aims to explore the factors of combustion when using KTP laser with high flow oxygen in an ex-vivo model. The variables tested were varying tissue type, tissue condition, oxygen concentration, laser setting, and smoke evacuation in a stainless-steel model. Outcome measures were time of lasing to the first spark and/or flame. A multivariate Cox proportional hazard model was used to determine the risk of spark and flame across the different risk factors. For every 10% increase in oxygen concentration above 60% the risk of flame increased by a factor of 2.3. Continuous laser setting at 2.6 W increased the risk by a factor of 72.8. The risk of lasing adipose tissue is 7.3 times higher than that of muscle. Charred tissue increases the risk of flame by a factor of 92.8. Flame occurred without a preceding spark 93.6% of the time. Using KTP laser in the pulsed mode with low wattages, minimising lasing time, reducing the oxygen concentration and avoiding lasing adipose or charred tissue produce a relatively low estimated risk of spark or flame.


Sign in / Sign up

Export Citation Format

Share Document