GEODESY CARTOGRAPHY AND AERIAL PHOTOGRAPHY
Latest Publications


TOTAL DOCUMENTS

121
(FIVE YEARS 45)

H-INDEX

2
(FIVE YEARS 1)

Published By Lviv Polytechnic National University

2415-3001, 2414-9993

2021 ◽  
Vol 94, 2021 (94) ◽  
pp. 13-19
Author(s):  
Fedir Zablotskyi ◽  
◽  
Bohdan Palianytsia ◽  
Bohdan Kladochnyi ◽  
Olena Nevmerzhytska ◽  
...  

The aim of this work is to evaluate the accuracy of determining the wet component of zenith tropospheric delay (ZTD) from GNSS-measurements and the accuracy of determining the hydrostatic component according to the Saastamoinen model in comparison with the radio sounding data as well. Zenith tropospheric delay is determined mainly by two methods - traditional, using radio sounding or using atmospheric models, such as the Saastamoinen model, and the method of GNSS measurements. Determination of the hydrostatic component of the zenith tropospheric delay was performed by radio sounding data obtained at the aerological station Praha-Libus in 2011-2013 and in 2018. Data were processed for the middle decades of January and July of each year at 0h o’clock of the Universal Time. The wet component was calculated from GNSS observations. By a significant number of radio soundings at the Praha-Libus aerological station, hydrostatic and wet components of zenith tropospheric delay (ZTD) and the same number of ZTD values derived for the corresponding time intervals from GNSS measurements at the GOPE reference station were determined. The values of the wet component of ZTD were determined and compared with the corresponding data obtained from radio soundings. We found that the error of the hydrostatic component in winter does not exceed 10 mm in absolute value, and in summer it is approximately 1.5 times smaller. This is due to differences in the stratification of the troposphere and lower stratosphere in winter and summer. As for the wet component of ZTD, its errors do not exceed: in winter 15 mm, in summer – 35 mm. The resulting differences in summer have a negative sign, indicating a systematic shift, and in winter – both negative and positive. Today, there are many studies aimed at improving the accuracy of determining zenith tropospheric delay by both Ukrainian and foreign authors, but the problem of the accuracy of the hydrostatic component remains open. The study provides recommendations for further research to improve the accuracy of zenith tropospheric delay.


2021 ◽  
Vol 94, 2021 (94) ◽  
pp. 35-43
Author(s):  
Andriy Babushka ◽  
◽  
Lyubov Babiy ◽  
Borys Chetverikov ◽  
Andriy Sevruk ◽  
...  

Earth remote sensing and using the satellite images play an important role when monitoring the effects of forest fires and assessing damage. Applying different methods of multispectral space images processing, we can determine the risk of fire distribution, define hot spots and determine thermal parameters, mapping the damaged areas and assess the consequences of fire. The purpose of the work is the severity assessment connected with the post-fire period on the example of the forests in the Chornobyl Exclusion Zone. The tasks of the study are to define the area of burned zones using space images of different time which were obtained from the Sentinel-2 satellite applying the method of a normalized burn ratio (NBR) and method of supervised classification. Space images taken from the Sentinel-2 satellite before and after the fire were the input data for the study. Copernicus Open Access Hub service is a source of images and its spatial resolution is 10 m for visible and near infrared bands of images, and 20 m for medium infrared bands of images. We used method of Normalized Burn Ratio (NBR) and automatically calculated the area damaged with fire. Using this index we were able to identify areas of zones after active combustion. This index uses near and middle infrared bands for the calculations. In addition, a supervised classification was performed on the study area, and signature files were created for each class. According to the results of the classification, the areas of the territories damaged by the fire were also calculated. The scientific novelty relies upon the application of a method of using the normalized combustion coefficient (NBR) and supervised classification for space images obtained before and after the fire in the Chernobyl Exclusion Zone. The practical significance lies in the fact that the studied methods of GIS technologies can be used to identify territories and calculate the areas of vegetation damaged by fires. These results can be used by local organizations, local governments and the Ministry of Emergency Situations to monitor the condition and to plan reforestation. The normalized burned ratio (NBR) gives possibility efficiently and operatively to define and calculate the area which were damaged by fires, that gives possibility operatively assess the consequences of such fires and estimate the damage. The normalized burned ratio allows to calculate the area of burned forest almost 2 times more accurately than the supervised classification. The calculation process itself also takes less time and does not require additional procedures (set of signatures). Supervised classification in this case gives worse accuracy, the process itself is longer, but allows to determine the area of several different classes.


2021 ◽  
Vol 94, 2021 (94) ◽  
pp. 29-34
Author(s):  
Ludmila Kazachenko ◽  
◽  
Vladyslav Kazachenko ◽  
Tetyana Zhidkova ◽  
◽  
...  

The development of exogenous processes on the Earth's surface is a large-scale problem. Due to the development of exogenous processes there are changes in the composition and structure of the earth's crust and its surface. The destruction of streets, houses and public buildings, roads and railways leads to enormous losses. To predict the development of soil degradation, erosion processes on agricultural lands, which lose annual production areas, leads to the formation of a ravine-beam system and reduces the productive amount of land owned by citizens – is a solution. The use of GIS technologies, remote sensing of the Earth and modern programming can partially solve the problem, as it is a rapid identification of areas that have undergone the process of soil degradation and possible prediction of the development of negative phenomena. The use of geodetic software, GIS, information layers of the Public cadastral map can help in the fastest finding of territories, development of the forecast of the further destructive action, development of the corresponding protective methods and their introduction. The areas with manifestations of exogenous processes - soil degradation in agricultural enterprises, where every year the area of highly fertile chernozems is lost, which leads to large losses and landslides in the forest-steppe and steppe settlements of Kharkiv region have been subject of our study. We investigated destructive processes by geodetic measurements in the territories of their manifestations, observations were carried out for 8 years. The development of exogenous processes on the Earth's surface was revealed, which was manifested in landslides in the settlements of the forest-steppe zone and degradation of agricultural lands in the steppe and forest-steppe part of Kharkiv region. The cause of the destruction of the earth's surface were factors independent of human activity. We built 3-D models of development of exogenous processes manifested in soil erosion and growth of the ravine-beam system and determined the degree of erosion after surveying and processing the results of geodetic measurements in the software Digitals. For 8 years, we made changes to the software, surveying the area and building a monitoring line. Also in the settlements on the territory of the two zones, we observed the development of landslides on the streets of the village. Milova and s. Nova Vasylivka, where there is an intensive development of exogenous processes. The use of GIS technologies and remote sensing of the Earth to monitor the development of exogenous processes simplifies the solution.


2021 ◽  
Vol 94, 2021 (94) ◽  
pp. 5-12
Author(s):  
Petro Dvulit ◽  
◽  
Stepan Savchuk ◽  
Iryna Sosonka ◽  
◽  
...  

The aim of the research is to diagnose the metrological characteristics of high-precision GNSS-observations by methods of non-classical error theory of measurements (NETM) based on Ukrainian reference stations. Methodology. We selected 72 GNSS reference stations, downloaded daily observation files from the LPI analysis center server, and created time series in the topocentric coordinate system. The duration of the time series is almost two years (March 24, 2019 - January 2, 2021). Using a specialized software package, the time series have been cleaned of offsets and breaks, seasonal effects, and the trend component has been removed. Verification of empirical distributions of errors was provided by the procedure of NETM on the recommendations offered by G. Jeffries and on the principles of hypothesis tests the theory according to Pearson's criterion. The main result of the research. It is established that the obtained time series of coordinates of reference GNSS stations do not confirm the hypothesis of their conformity to the normal Gaussian distribution law. NETM diagnostics of the accuracy of high-precision GNSS measurements, which is based on the use of confidence intervals for assessing the asymmetry and kurtosis of a significant sample, followed by the Pearson test, confirms the presence of weak, not removed from GNSS-processing, sources of systematic errors. Scientific novelty. The authors use the possibility of NETM to improve the processing of high-precision GNSS measurements and the need to take into account the sources of systematic errors. Failure to take into account certain factors creates the effect of shifting the time coordinate series, which, in turn, leads to subjective estimates of station velocity, i.e. their geodynamic interpretation. Practical significance. Research of the reasons for deviations of errors distribution from the established norms provides metrological literacy of carrying out high-precision GNSS measurements of large samples.


2021 ◽  
Vol 94, 2021 (94) ◽  
pp. 20-28
Author(s):  
Mykhailo Fys ◽  
◽  
Volodymyr Litynskyi ◽  
Anatolii Vivat ◽  
Svyatoslav Litynskyi ◽  
...  

The aim. The study of formulas determination of the point coordinates by the inverse linear-angular intersection method. Previously, we investigated the possibility of using electronic total stations to control the geometric parameters of industrial buildings. The applied application of electronic total stations for high-precision measurements has been investigated as well. [Vivat, 2018]. The formula for optimal use of the device with certain accuracy characteristics relative to the measured basis is analytically proved and derived [Litynskyi, 2014]. Measurements on the basis of the II category are performed and theoretical calculations are confirmed. The possibility of achieving high accuracy in determining the segment by the method of linear-angular measurements is shown [Litynsky, 2015]. The influence of the angle value on the accuracy of determining the coordinates by the sine theorem is investigated and the possibility of optimizing the determination of coordinates by the method of inverse linear-angular serif by the formulas of cosines and sines is investigated [Litynskyi, 2019]. Method. Establishing a mathematical interconnection between measured values (distances and angles) with the required (flat coordinates of a point), differentiation and finding the minima of functions. Results.There were five formulas selected, of which six combinations had been created to calculate the increments of coordinates and to estimate their accuracy. Numerical experiments show that neither method has a significant advantage, which is supported by the results presented in the graphs and tables. It is worth noting one feature of the second method - in which it is possible to determine the increments of coordinates with an accuracy that exceeds the accuracy of measuring the sides. The possibility of optimizing the coordinate increments determination due to the choice of calculation formulas is considered. The possibility of increasing the accuracy of determination of the coordinates increments using different calculation formulas is researched. Consequently, it is suggested to optimize the choice of calculation formulas depending on the position of the desired point. The results of these studies can be used to create electronic total station or laser tracker application software in order to improve the accuracy of coordinate determination.


2021 ◽  
Vol 94, 2021 (94) ◽  
pp. 44-53
Author(s):  
Taras Ievsiukov ◽  
◽  
Borys Chetverikov ◽  
Іvan Kovalchuk ◽  
Іvan Openko ◽  
...  

Elaboration of the method of creating a web-GIS of Polish burials at the Baikove Cemetery in Kyiv. Achieving this goal involves the following tasks: to develop the structure of the geographic information system, its framework and to fill the file database. For realization of the set tasks the technological scheme consisting of 12 stages of work is offered. The first stage involved the collection of cartographic and descriptive data on the territory of the object of study, as well as the search for possible registers of Polish burials within the object under study. In the second stage, field surveys were performed to determine the coordinates of each grave of the Polish burials at the Baikove Cemetery using a GIS tablet with an RTK antenna LT700H (accuracy up to 0.30 m). The total number of coordinated points was 565, which were concentrated in 7 sections of the cemetery. The third stage included the coordination of reference points and the binding of this support in the GIS MapInfo environment of the fragment of the topographic plan of Kyiv on a scale of 1: 2000 to the territory of the Baikove Cemetery. There were a total of 11 landmarks. The maximum binding error is 0.2 m. In the fourth stage, all point objects were displayed according to their coordinates on the basis of the map and the corresponding symbols were selected. The next step was to develop and populate a relational database for point objects. The database contained the following columns: grave number, name and surname of the buried person, grave coordinates and hyperlinks to burial information in the file database. Next, all map layers were exported to html format, and the point object layer was exported to kml format using a universal translator, which allowed to view burial data in GoogleEarth. At the eighth stage of the technological scheme the structure of layouts of each html-page of the created online GIS was developed. All map data had hyperlinks to the selected AOI objects. In the case of the Baikove Cemetery scheme, plots with Polish burials were marked. Clicking on them opened a topographic plan with marked point objects of burials. In turn, when you click on them, information about the burial appeared from the file database. At the tenth stage, 5 sheets of topographic plans with burials were generated. One sheet of scale 1: 2000 and four sheets of scale 1: 500, for better "spreading" and initialization of burials. The eleventh stage is devoted to the creation and filling of a file database on Polish burials. This database contained the following structure: photo of the burial, coordinates, surname and name, years of life, additional photographs (if available), sex of the buried person, interpreted inscription on the tombstone, as well as, if possible, detailed information and belonging of the buried person to a certain profession, its outstanding achievements and accomplishments. At the last stage, the hyperlinks of the transition between the pages were configured and the system was tested. The scientific novelty lies in the development of the concept of joint use of various applications of geoinformation and non-geoinformation purposes. The technological scheme of creation of WEB-GIS of Polish burials of the Baikove Cemetery in Kyiv is offered. Implemented geographic information system is designed for inventory of burials, analysis of the condition of tombstones and their spatial location in the cemetery. In addition, the created GIS can be used for tourism purposes and in the study of historical figures of Polish origin.


2021 ◽  
Vol 93,2021 (93) ◽  
pp. 27-34
Author(s):  
Kornyliy Tretyak ◽  
◽  
Ivan Brusak ◽  

Purpose. The purpose of this work is obtaining connections between the Baltic and European height systems based on the I class leveling between the Ukrainian and Polish control points of the base vertical networks and construction of the quasigeoid surface on the border area. Method. Full integration of the hight system of Ukraine into the European vertical reference system (EVRS) consists of two stages: modernization of the height network of Ukraine through its integration into the United European leveling network UELN; construction and use as a regional vertical date the model of high-precision quasigeoid, which will be consistent with the European geoid EGG2015. The analysis of methods of high-precision leveling in Ukraine and Poland, and also the analysis of methods of construction of quasigeoid models in these countries is performed. Results. For integrating the Ukrainian hight system into the UELN/EVRS2000 system, the Ukrainian side performed I class geometric leveling along two lines: Lviv - Shehyni - Przemysl and Kovel - Yagodyn - Chelm with total length of 196 km. The root mean square systematic error on both lines of leveling was s<0.01 mm/km. In turn, the mean square random error along the line Lviv - Shehyni - Przemysl is h=0.29 mm/km, and along the line Kovel - Yagodyn - Chelm is h=0.27 mm/km. For double control on the cross-border part, the Polish side performed high-precision leveling with a length of 33 km. The differences between the Ukrainian and Polish leveling in all sections are within the tolerance. The analysis of influence of geodynamic phenomena on control of high-precision leveling is carried out. GNSS-leveling was performed on all fundamental and ground benchmarks, as well as horizontal marks. These measurements were used to build a quasigeoid model for the border area of Ukraine. The MSE of the obtained quasigeoid model is about 2 cm, which corresponds to the accuracy of the input information. Scientific novelty and practical significance. The connection of the Ukrainian and European height systems will ensure Ukraine’s integration into the European economic system, participation in international research of global ecological and geodynamic processes, study of the Earth’s shape and gravitational field and mapping of Ukraine using navigational and remote-sensing satellite technologies. Calculation of a high-precision model of a quasigeoid on the Ukraine area in relation to the European height system, agreed with the European geoid EGG2015, will allow to obtain gravity-dependent heights using modern satellite technologies.


2021 ◽  
Vol 93,2021 (93) ◽  
pp. 72-84
Author(s):  
Mykhailo Protsyk ◽  
◽  
Borys Chetverikov ◽  
Andrii Ivanevych ◽  
◽  
...  

Aim of the work. To develop a method of automated allocation of catchment basins and obtaining their hydrological and morphometric characteristics, which is based on digital terrain models. Methods and results of work. A necessary condition for the correct filling of the terrain is the presence of points of true flow at the edge of the settlement area (if the river flows into the lake, it should not enter the calculated area completely, otherwise incorrect results will be obtained). By performing the operation of filling the relief of the terrain, a new dem is created, which does not contain fictitious depressions and is used in the next step as input data to calculate the flow direction according to the algorithm d8. According to the proposed technological scheme it is necessary to process step by step the following six blocks: filling of closed depressions, calculation of runoff direction, calculation of total runoff, creation of point vector data set of closing points (mouth points), creation of watershed boundaries, raster-vector data conversion. Theoretical research tested the method of automated allocation of watersheds, namely the determination of hydrological and morphometric parameters of the terrain. The pools were ranked according to these parameters according to the existing classifications, a series of relevant thematic electronic maps was compiled. It should be noted that in Skole district of lviv region there are 590 catchment areas, and their area is 1407 km2. Watersheds are classified by outcrop, namely low-mountain basins in the region of 6, their area is 7 km2, medium-mountain 360, area 755 km2, high-mountain 224, area 645 km2. Pools are classified according to the average slope: the first category from 0-3 degrees, very gentle slopes - pools 27, area 7 km2; the second category from 9-12 degrees, sloping slopes-pools of 128, the area 303 km2; the third category from 12-15> degrees, steep slopes - pools of 225, the area 648 km2. The accuracy between the reference and the original relief model was evaluated. We can say that sle = 0.63 (m) slope, sle = 5.43 (m) height. Scientific novelty and practical significance. The technological scheme of automated separation of catchment basins according to digital relief models for Skoliv district of lviv region is proposed and the method of separation of catchment basins is worked out. According to the developed method, maps of watercourses of different orders and their catchment basins and classification of basins by area on the territory of Skole administrative district, which can be used by local organizations on water resources, are constructed.


2021 ◽  
Vol 93,2021 (93) ◽  
pp. 59-71
Author(s):  
Yuliia Maksymova ◽  
◽  
Oleksii Boiko ◽  

Purpose. The aim of the research is to develop fuzzy impact models of the natural and anthropogenic influence, which allows to integrate different physical factors, which makes it possible to bring them to a single environmental assessment system and comparison of different assessed areas. Methodology. The basis of the proposed modeling is a traditional approach on the development of such models, which includes conceptual, logical and physical modeling levels. The Unified Modeling Language (UML) is used for conceptual modeling level, which is recommended as the main modeling tool in the set of international standards in geographic information / geomatics and software that supports the interactive mode of UML diagrams creation Visio. The geospatial database and SQL-functions are implemented and the extension of the standard SQL-99 language with a new data type geometry and built-in functions which provides storage, processing and analysis of geospatial data in database management systems is used. The proposed models are realized in the environment of object-relational DBMS PostgreSQl / Postgis and geographic information system QGIS. Results. A review of the experience of using fuzzy logic to assess the state of the environment is done. Technological models for computation of indicators of administrative unit provision by social infrastructure objects, influence of greenery, industrial territories and transport on the environment are offered and realized. An example of approbation of the proposed approach based on OpenStreetMaps open data for the Popasnianskyi distinct of Luhansk region territory is given. Scientific novelty. Theoretical generalizations are made and practical results are received of resolving applied problem of the development of the fuzzy impact assessment model of various factors influence on the environment with use of GIS. Such assessment can be used at the stage of community spatial development strategies preparation to determine the most acceptable development version, as well as to unify the means of strategies implementation monitoring, organically linking local, national and global tasks. Practical significance. The application of the proposed approach of GRID modeling and fuzzy impact assessment use in assessing the quality of the environment allows to integrate different indicators, compare them, by bringing them into a single evaluation system.


2021 ◽  
Vol 93,2021 (93) ◽  
pp. 35-41
Author(s):  
Sofiia Doskich ◽  

The emergence of satellite observations was marked by their widespread use to determine the velocities and direction of horizontal motions of lithosphere plates (modern kinematics of lithosphere plates), which allowed to research the deformation processes at the global and regional levels. Today, permanent GNSS stations cover a large part of the land area. Since many of these stations have accumulated a large amount of daily observation over 20 years, it is possible to trace the deformation processes of certain areas. There is the problem of correct identification of observations of the true parameters of the deformation process. This issue requires the joint work of geophysicists and geodesists. But high-precision time series and values of GNSS station velocities are important and perspective data for the interpretation of geodynamic processes, which are much easier to obtain than geophysical or geological data, do not require special costs and should take into account their active development, the number of such stations is growing rapidly. Today, according to unofficial data, more than 300 reference stations operate in Ukraine. The aim of this work is to detect deformations of the Earth's crust in the Carpathian folded system using GNSS technology. The input data for the research were the observations over eight years (2013-2020) at reference stations in Ukraine (ZAKPOS network). From these observations, the combined solution (coordinates time series and velocities) was calculated using the scientific software GAMIT / GLOBK. According to the obtained data, the horizontal displacements vectors of GNSS stations were also constructed, and the deformations of the Earth's crust were calculated by the method of triangles, the vertices of which are GNSS stations, using the GPS Triangle Strain Calculator software. The calculated values of deformations showed a different geodynamic value, depending on the location of the triangles. In particular, the active zones of stretching (Rakhiv-Verkhovyna and Syanok-Ustryky-Dolishni) and compression (Rakhiv-Khust-Mukachevo) were identified. The research results make it possible to establish the features of the spatial distribution of crustal movement in the Carpathian region and in the future in a joint interpretation with geophysical data to create a regional geodynamic model of the Carpathian folded system.


Sign in / Sign up

Export Citation Format

Share Document