scholarly journals Tectono-thermal evolution of Oman's Mesozoic passive continental margin under the obducting Semail Ophiolite: a case study of Jebel Akhdar, Oman

Solid Earth ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 149-175 ◽  
Author(s):  
Arne Grobe ◽  
Christoph von Hagke ◽  
Ralf Littke ◽  
István Dunkl ◽  
Franziska Wübbeler ◽  
...  

Abstract. We present a study of pressure and temperature evolution in the passive continental margin under the Oman Ophiolite using numerical basin models calibrated with thermal maturity data, fluid-inclusion thermometry, and low-temperature thermochronometry and building on the results of recent work on the tectonic evolution. Because the Oman mountains experienced only weak post-obduction overprint, they offer a unique natural laboratory for this study. Thermal maturity data from the Adam Foothills constrain burial in the basin in front of the advancing nappes to at least 4 km. Peak temperature evolution in the carbonate platform under the ophiolite depends on the burial depth and only weakly on the temperature of the overriding nappes, which have cooled during transport from the oceanic subduction zone to emplacement. Fluid-inclusion thermometry yields pressure-corrected homogenization temperatures of 225 to 266 ∘C for veins formed during progressive burial, 296–364 ∘C for veins related to peak burial, and 184 to 213 ∘C for veins associated with late-stage strike-slip faulting. In contrast, the overlying Hawasina nappes have not been heated above 130–170 ∘C, as witnessed by only partial resetting of the zircon (U-Th)/He thermochronometer. In combination with independently determined temperatures from solid bitumen reflectance, we infer that the fluid inclusions of peak-burial-related veins formed at minimum pressures of 225–285 MPa. This implies that the rocks of the future Jebel Akhdar Dome were buried under 8–10 km of ophiolite on top of 2 km of sedimentary nappes, in agreement with thermal maturity data from solid bitumen reflectance and Raman spectroscopy. Rapid burial of the passive margin under the ophiolite results in sub-lithostatic pore pressures, as indicated by veins formed in dilatant fractures in the carbonates. We infer that overpressure is induced by rapid burial under the ophiolite. Tilting of the carbonate platform in combination with overpressure in the passive margin caused fluid migration towards the south in front of the advancing nappes. Exhumation of the Jebel Akhdar, as indicated by our zircon (U-Th)/He data and in agreement with existing work on the tectonic evolution, started as early as the Late Cretaceous to early Cenozoic, linked with extension above a major listric shear zone with top-to-NNE shear sense. In a second exhumation phase the carbonate platform and obducted nappes of the Jebel Akhdar Dome cooled together below ca. 170 ∘C between 50 and 40 Ma before the final stage of anticline formation.

2018 ◽  
Author(s):  
Arne Grobe ◽  
Christoph von Hagke ◽  
Ralf Littke ◽  
István Dunkl ◽  
Franziska Wübbeler ◽  
...  

Abstract. The Mesozoic sequences of the Oman Mountains experienced only weak post-obduction overprint and deformation, thus they offer a unique natural laboratory to study obduction. We present a study of the pressure and temperature evolution in the passive continental margin under the Oman Ophiolite, using numerical basin models calibrated with thermal maturity data, fluid inclusion thermometry and low-temperature thermochronology. Thermal maturity data from the Adam Foothills constrain burial in the foredeep moving in front of the advancing nappes to be at least 4 km. Peak temperature evolution in the carbonate platform under the ophiolite is only weakly dependent on the temperature of the overriding nappes which have cooled during transport from the oceanic subduction zone to emplacement. Fluid-inclusion thermometry yields pressure-corrected homogenization temperatures of 225 to 266 °C for veins formed during progressing burial, 296–364 °C for veins related to peak burial and 184 to 213 °C for veins associated with late-stage strike-slip faulting. In contrast, the overlying Hawasina nappes have not been heated above c. 170 ºC, as witnessed by only partial resetting of the zircon (U-Th)/He thermochronometer. In combination with independently determined temperatures from solid bitumen reflectance, we infer that the fluid inclusions of peak-burial-related veins formed at minimum pressures of 225–285 MPa. This implies that the rocks of the future Jebel Akhdar Dome were buried under 8–10 km of ophiolite on top of 2 km of sedimentary nappes, which is in agreement with thermal maturity data of solid bitumen reflectance and Raman spectroscopy. Burial of the passive margin under the ophiolite results in sub-lithostatic pore pressures, in agreement with observations on veins formed in dilatant fractures in the carbonates. We infer that overpressure is induced by rapid burial under the ophiolite nappes. Obduction-related tilt of the passive margin in combination with overpressure in the passive margin caused fluid migration towards the south in front of the nappes. Exhumation of the Jebel Akhdar as indicated by our zircon (U-Th)/He data, integrated with existing data, started as early as the late Cretaceous to early Cenozoic, linked with extension along a major listric shear zone with top-to-NNE shear sense, together with an early phase of extensional dome formation. The carbonate platform and obducted nappes of the whole Jebel Akhdar cooled together below c. 170 °C between 50 and 40 Ma, before the final stage of anticline formation.


2021 ◽  
Author(s):  
A Zagorevski ◽  
C R van Staal ◽  
J H Bédard ◽  
A Bogatu ◽  
D Canil ◽  
...  

Ophiolite complexes are an important component of oceanic terranes in the northern Cordillera and constitute a significant amount of juvenile crust added to the Mesozoic Laurentian continental margin during Cordilleran orogenesis. Despite their tectonic importance, few systematic studies of these complexes have been conducted. Detailed studies of the pseudostratigraphy, age, geochemistry, and structural setting of ophiolitic rocks in the northern Cordillera indicate that ophiolites formed in Permian to Middle Triassic suprasubduction zone settings and were obducted onto passive margin sequences. Re-evaluation of ophiolite complexes highlights fundamental gaps in the understanding of the tectonic framework of the northern Cordillera. The previous inclusion of ophiolite complexes into generic 'oceanic' terranes resulted in significant challenges for stratigraphic nomenclature, led to incorrect terrane definitions, and resulted in flawed tectonic reconstructions.


2014 ◽  
Vol 998-999 ◽  
pp. 1458-1461
Author(s):  
Jiang Hua Chen

There are good shales well developed in the study area with significant thickness and stable distribution. The study area is estimated to have a big potential for shale gas. However, the study area experienced three major phases of tectonic events and thus developed severe folds and big faults. From the outcrop study and core analysis information of some old geological wells, the thermal maturity of shale is quite high up to 4%. Graphitization is observed in lower Cambrian which acting as another indicator of high maturity. Study released that this may link to the tectonic evolution (volcanic activities) and deep burial depth. Therefore, the preservations conditions of shale gas in the study area would be a key point for the success of exploration.


2006 ◽  
Author(s):  
A. I. Eliseev ◽  
◽  
A. I. Antoshkina ◽  
V. A. Saldin ◽  
N. Yu. Nikulova ◽  
...  

Paleozoic sedimentary basins of the northeast European Platform is a component of large megabasin of the northeast passive continental margin of the European continent in the Paleozoic. The establishment of a connection between a paleodynamic history of a basin and its sedimentary formations types, which are the most reliable indicators of geodynamic conditions, is one of the primary problems of modern lithology. Reliable indicators at geodynamic reconstructions are genetically predetermined by laterial and vertical lines of the sedimentary formations. Formations and lithological complexes being the brightest indicators of the paleodynamic regimes change of the basin have been considered formations lines of the passive continental margin of the westuralian type during the Paleozoic.


Sign in / Sign up

Export Citation Format

Share Document