thermal evolution
Recently Published Documents


TOTAL DOCUMENTS

1864
(FIVE YEARS 418)

H-INDEX

89
(FIVE YEARS 10)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Georgy Alexandrovich Peshkov ◽  
Evgeny Mikhailovich Chekhonin ◽  
Dimitri Vladilenovich Pissarenko

Some of the simplifying assumptions frequently used in basin modelling may adversely impact the quality of the constructed models. One such common assumption consists of using a laterally homogeneous crustal basement, despite the fact that lateral variations in its properties may significantly affect the thermal evolution of the model. We propose a new method for the express evaluation of the impact of the basement’s heterogeneity on thermal history reconstruction and on the assessment of maturity of the source rock. The proposed method is based on reduced-rank inversion, aimed at a simultaneous reconstruction of the petrophysical properties of the heterogeneous basement and of its geometry. The method uses structural information taken from geological maps of the basement and gravity anomaly data. We applied our method to a data collection from Western Siberia and carried out a two-dimensional reconstruction of the evolution of the basin and of the lithosphere. We performed a sensitivity analysis of the reconstructed basin model to assess the effect of uncertainties in the basement’s density and its thermal conductivity for the model’s predictions. The proposed method can be used as an express evaluation tool to assess the necessity and relevance of laterally heterogeneous parametrisations prior to a costly three-dimensional full-rank basin modelling. The method is generally applicable to extensional basins except for salt tectonic provinces.


2022 ◽  
Vol 11 (2) ◽  
pp. 283-294
Author(s):  
Zhipeng Li ◽  
Dong-Xu Li ◽  
Zong-Yang Shen ◽  
Xiaojun Zeng ◽  
Fusheng Song ◽  
...  

AbstractLead-free bulk ceramics for advanced pulsed power capacitors show relatively low recoverable energy storage density (Wrec) especially at low electric field condition. To address this challenge, we propose an A-site defect engineering to optimize the electric polarization behavior by disrupting the orderly arrangement of A-site ions, in which $${\rm{B}}{{\rm{a}}_{0.105}}{\rm{N}}{{\rm{a}}_{0.325}}{\rm{S}}{{\rm{r}}_{0.245 - 1.5x}}{_{0.5x}}{\rm{B}}{{\rm{i}}_{0.325 + x}}{\rm{Ti}}{{\rm{O}}_3}$$ Ba 0.105 Na 0.325 Sr 0.245 − 1.5 x □ 0.5 x Bi 0.325 + x TiO 3 ($${\rm{BN}}{{\rm{S}}_{0.245 - 1.5x}}{_{0.5x}}{{\rm{B}}_{0.325 + x}}{\rm{T}}$$ BNS 0.245 − 1.5 x □ 0.5 x B 0.325 + x T , x = 0, 0.02, 0.04, 0.06, and 0.08) lead-free ceramics are selected as the representative. The $${\rm{BN}}{{\rm{S}}_{0.245 - 1.5x}}{_{0.5x}}{{\rm{B}}_{0.325 + x}}{\rm{T}}$$ BNS 0.245 − 1.5 x □ 0.5 x B 0.325 + x T ceramics are prepared by using pressureless solid-state sintering and achieve large Wrec (1.8 J/cm3) at a low electric field (@110 kV/cm) when x = 0.06. The value of 1.8 J/cm3 is super high as compared to all other Wrec in lead-free bulk ceramics under a relatively low electric field (< 160 kV/cm). Furthermore, a high dielectric constant of 2930 within 15% fluctuation in a wide temperature range of 40–350 °C is also obtained in $${\rm{BN}}{{\rm{S}}_{0.245 - 1.5x}}{_{0.5x}}{{\rm{B}}_{0.325 + x}}{\rm{T}}$$ BNS 0.245 − 1.5 x □ 0.5 x B 0.325 + x T (x = 0.06) ceramics. The excellent performances can be attributed to the A-site defect engineering, which can reduce remnant polarization (Pr) and improve the thermal evolution of polar nanoregions (PNRs). This work confirms that the $${\rm{BN}}{{\rm{S}}_{0.245 - 1.5x}}{_{0.5x}}{{\rm{B}}_{0.325 + x}}{\rm{T}}$$ BNS 0.245 − 1.5 x □ 0.5 x B 0.325 + x T (x = 0.06) ceramics are desirable for advanced pulsed power capacitors, and will push the development of a series of Bi0.5Na0.5TiO3 (BNT)-based ceramics with high Wrec and high-temperature stability.


Energy ◽  
2022 ◽  
pp. 123190
Author(s):  
Zhichao Wang ◽  
Qing Wang ◽  
Chunxia Jia ◽  
Jingru Bai

Icarus ◽  
2022 ◽  
pp. 114871
Author(s):  
Amirhossein Bagheri ◽  
Amir Khan ◽  
Frederic Deschamps ◽  
Henri Samuel ◽  
Mikhail Kruglyakov ◽  
...  
Keyword(s):  

2022 ◽  
Vol 292 ◽  
pp. 118363
Author(s):  
Mengjie Chang ◽  
Chao Zhang ◽  
Mingyang Li ◽  
Junyu Dong ◽  
Changchao Li ◽  
...  

Author(s):  
Andrenilton Silva ◽  
Artur Barros ◽  
Alek Sousa ◽  
Daniel Jarvie ◽  
Sebastian Calderón ◽  
...  

The Barreirinha Formation-Upper Devonian, is the main petroleum source rock of the Amazon Basin, deposited during the great Devonian Transgression, contributing to significant accumulations of organic matter (OM) in anoxic conditions, which allowed its preservation. The present work had the objective of characterizing the molecular composition of biomarkers in outcrops samples of the Barreirinha Formation, aiming to evaluate the paleoenvironment, thermal evolution, and the preservation of OM total organic carbon (TOC) and Rock-Eval pyrolysis indicate considerable amounts of immature OM deposited in a low oxygenation environment. Gas chromatographymass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) data corroborate that the OM was deposited in a suboxic to the oxic environment and low salinity (absence or low relative abundance of β-carotane and gammacerane). 24-N-Propyl-cholestane was detected and identified by synthetic pattern co-injection. High concentrations of tetracyclic polyprenoids (TPPs) in ascending order from base to top, high hopane/sterane ratios, to suggest that the samples had a high molecular weight n-alkanes, C29 steranes, low thermal evolution, and anoxic depositional paleoenvironment.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8317
Author(s):  
Qiang Cao ◽  
Jiaren Ye ◽  
Yongchao Lu ◽  
Yang Tian ◽  
Jinshui Liu ◽  
...  

Semi-open hydrous pyrolysis experiments on coal-measure source rocks in the Xihu Sag were conducted to investigate the carbon isotope evolution of kerogen, bitumen, generated expelled oil, and gases with increasing thermal maturity. Seven corresponding experiments were conducted at 335 °C, 360 °C, 400 °C, 455 °C, 480 °C, 525 °C, and 575 °C, while other experimental factors, such as the heating time and rate, lithostatic and hydrodynamic pressures, and columnar original samples were kept the same. The results show that the simulated temperatures were positive for the measured vitrinite reflectance (Ro), with a correlation coefficient (R2) of 0.9861. With increasing temperatures, lower maturity, maturity, higher maturity, and post-maturity stages occurred at simulated temperatures (Ts) of 335–360 °C, 360–400 °C, 400–480 °C, and 480–575 °C, respectively. The increasing gas hydrocarbons with increasing temperature reflected the higher gas potential. Moreover, the carbon isotopes of kerogen, bitumen, expelled oil, and gases were associated with increased temperatures; among gases, methane was the most sensitive to maturity. Ignoring the intermediate reaction process, the thermal evolution process can be summarized as kerogen0(original) + bitumen0(original)→kerogenr (residual kerogen) + expelled oil (generated) + bitumenn+r (generated + residual) + C2+(generated + residual) + CH4(generated). Among these, bitumen, expelled oil, and C2-5 acted as reactants and products, whereas kerogen and methane were the reactants and products, respectively. Furthermore, the order of the carbon isotopes during the thermal evolution process was identified as: δ13C1 < 13C2-5 < δ13Cexpelled oil < δ13Cbitumen < δ13Ckerogen. Thus, the reaction and production mechanisms of carbon isotopes can be obtained based on their changing degree and yields in kerogen, bitumen, expelled oil, and gases. Furthermore, combining the analysis of the geochemical characteristics of the Pinghu Formation coal–oil-type gas in actual strata with these pyrolysis experiments, it was identified that this area also had substantial development potential. Therefore, this study provides theoretical support and guidance for the formation mechanism and exploration of oil and gas based on changing carbon isotopes.


Sign in / Sign up

Export Citation Format

Share Document