ophiolitic rocks
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1264
Author(s):  
Giovanna Rizzo ◽  
Roberto Buccione ◽  
Michele Paternoster ◽  
Salvatore Laurita ◽  
Luigi Bloise ◽  
...  

In the Tethyan realm, leucocratic rocks were recognized as dikes and layers outcropping in the ophiolitic rocks of the Western Alps, in Corsica, and in the Northern Apennines. Several authors have suggested that the origin of leucocratic rocks is associated with partial melting of cumulate gabbro. Major and trace elements composition and paragenesis provided information about the leucocratic rocks genetic processes. This research aims at disclosing, for the first time, the petrographical and geochemical features of Timpa delle Murge leucocratic rocks, Pollino Massif (southern Italy), in order to discuss their origin and geodynamic significance through a comparison with other Tethyan leucocratic rocks. These rocks are characterized by high amounts of silica with moderate alumina and iron-magnesium contents showing higher potassium contents than plagiogranites, due to plagioclase alteration to sericite. Plagioclase fractionation reflects negative Eu anomalies indicating its derivation from gabbroic crystal mushes. The chondrite normalized REEs patterns suggest the participation of partial melts derived from a metasomatized mantle in a subduction environment. The results reveal some similarities in composition with other Tethyan leucocratic rocks, especially those concerning Corsica and the Northern Alps. These new data provide further clues on the origin of these leucocratic rocks and the Tethyan area geodynamic evolution.


2021 ◽  
Vol 11 (22) ◽  
pp. 10524
Author(s):  
El Saeed R. Lasheen ◽  
Gehad M. Saleh ◽  
Farrage M. Khaleal ◽  
Mamdooh Alwetaishi

This contribution deals with new geology, petrography, and bulk-rock/mineral chemistry of the poorly studied ultramafics of Wadi Ibib–Wadi Shani (WI–WS) district, South Eastern Desert, Egypt. These ultramafics are dismembered ophiolitic rocks that can be subdivided into serpentinites and serpentinized peridotites. Primary minerals such as olivine and pyroxene are absent in serpentinites, but relics of them occur in serpentinized peridotites. Pseudomorph after olivine is indicated by common hourglass textures with less mesh, whilst schistose bastites reflect a pyroxene pseudomorph. Chromite can be subdivided into Cr-spinel and Al-spinel. Cr-spinel ranges from chromite to magnesochromite in composition, whereas Al-spinel belongs to the spinel field. Cr-spinel includes YCr (Cr/(Cr+Al+Fe+3), YAl (Al/(Al+Cr+Fe+3), and YFe+3 (Fe+3/(Fe+3+Al+Cr), similar to forearc peridotite, whilst Al-spinel is more similar to abyssal peridotite, and may be formed during inanition of subduction processes in proto forearc environments. The main secondary minerals are tremolite, talc, and chlorite—which is subdivided into pycnochlorite and diabantite—and their temperature ranges from 174 to 224 °C. The examined rocks had undergone high partial melting degrees (>25%), as indicated by the Cr# of their unaltered cores (Cr-spinel, >0.6), whole rocks (Al2O3, SiO2, CaO, and MgO), trace and REEs, depleted Na2O, Al2O3, and Cr2O3 of clinopyroxene, and high forsterite content ((Fo = 100 Mg/Mg + Fe), av. 95.23 mol%), consistent with forearc settings.


2021 ◽  
Author(s):  
Changlei Fu ◽  
et al.

Table S1: Spinel compositions of serpentinites from the Saibagou ophiolite complex; Table S2: Whole-rock major (wt%) and trace elements (ppm) compositions for the Luofengpo ophiolitic rocks; Table S3: LA-ICP-MS zircon U-Pb data for various rocks from the ophiolite complex and ocean plate stratigraphy within the North Qaidam belt; Table S4: Zircon Lu-Hf isotopic compositions for various rocks from the ophiolite complex and ocean plate stratigraphy within the North Qaidam belt; Table S5: Whole-rock Rb-Sr and Sm-Nd isotopic compositions for the Luofengpo ophiolitic rocks.


2021 ◽  
Author(s):  
Changlei Fu ◽  
et al.

Table S1: Spinel compositions of serpentinites from the Saibagou ophiolite complex; Table S2: Whole-rock major (wt%) and trace elements (ppm) compositions for the Luofengpo ophiolitic rocks; Table S3: LA-ICP-MS zircon U-Pb data for various rocks from the ophiolite complex and ocean plate stratigraphy within the North Qaidam belt; Table S4: Zircon Lu-Hf isotopic compositions for various rocks from the ophiolite complex and ocean plate stratigraphy within the North Qaidam belt; Table S5: Whole-rock Rb-Sr and Sm-Nd isotopic compositions for the Luofengpo ophiolitic rocks.


2021 ◽  
Author(s):  
H.S. Moghadam ◽  
et. al

Table S1: Zircon O and Lu-Hf isotopic composition of the Zagros inner-belt and outer-belt ophiolitic rocks; Table S2: Whole rock major and trace elements analysis of the Zagros inner-belt and outer-belt ophiolitic rocks; Table S3: LA-ICP-MS U-Pb analyses of zircons from the Zagros inner-belt and outer-belt ophiolites; Table S4: SIMS U-Pb analyses of zircon from the Zagros inner-belt and outer-belt ophiolites; Appendix A.


2021 ◽  
Author(s):  
H.S. Moghadam ◽  
et. al

Table S1: Zircon O and Lu-Hf isotopic composition of the Zagros inner-belt and outer-belt ophiolitic rocks; Table S2: Whole rock major and trace elements analysis of the Zagros inner-belt and outer-belt ophiolitic rocks; Table S3: LA-ICP-MS U-Pb analyses of zircons from the Zagros inner-belt and outer-belt ophiolites; Table S4: SIMS U-Pb analyses of zircon from the Zagros inner-belt and outer-belt ophiolites; Appendix A.


2021 ◽  
Author(s):  
Federico Rabuffi ◽  
Massimo Musacchio ◽  
Francesco Salvini ◽  
Malvina Silvestri ◽  
Maria Fabrizia Buongiorno

<p>Remote Sensing is a proven tool to study the Earth's surface and allows to analyze the wide portion of the surfaces by using different platforms/sensors (e.g. optical and active remote sensing, lidar), giving the possibility of multidisciplinary and multiscale approaches. In the proposed study, remote sensing analysis provides the possibility to understand the relationship between tectonic structures, lithology, and geothermal manifestations, and to test these techniques to monitor geothermal areas. This study allowed us to better understand the structural framework of a geothermal area, located in Southern Tuscany, highlighting the role of brittle deformation to produce an enhanced pathway for fluid migrations and upwelling.</p><p>The studied area is the “Parco Naturalistico delle Biancane” (PNB) in the Grosseto province and belongs to the Cenozoic Tyrrhenian-Apennine orogenic system. The tectonic framework includes a fault and thrust belt setting derived from the collision between the Corsica-Sardinia Block and Adriatic Plate during late Oligocene-Miocene times. This process determined the pile-up of several tectonic units which are, from the top: (1) Ligurian Units consisting of ophiolitic rocks and pelagic sediments (Jurassic - Oligocen); (2) Cretaceous-Oligocene terrigenous deposits; (3) The Mesozoic Tuscan Nappe. Successively, the belt was affected by a regional, mainly extensional tectonics, then a magmatic intrusion affected this thinned Tyrrhenian belt to form the Tuscan Magmatic Province. In Recent time, the region underwent a general, yet differentiated uplift, and the major geothermal areas locate to the relative higher zone. This provides the Southern Tuscany to be the main Italian geothermal area.</p><p>In this study, we analyzed the area from several points of view. The lineament domain analysis was performed in a multiscale approach: from 90 meters to 5 meters of pixel size, including 30 m and 10 m. This multiscale analysis allowed the identification of a number of lineament clusters related to the different tectonic phases which affected the PNB area. The found lineament distribution (in terms of azimuth and length) reflects the geodynamics effects on the surface, their clustering was related to the various crustal stress trajectories both at the regional and local scales.</p>


2021 ◽  
Author(s):  
Tunahan Arık ◽  
Ömer Kamacı ◽  
Işıl Nur Güraslan ◽  
Şafak Altunkaynak

<p>Eocene granitoids in NW Anatolia occurred following the continental collision between Sakarya Continent and Tauride-Anatolide Platform and mark the onset of post-collisional magmatism in the region. One of the representative members of the Eocene granitoids, the Tepeldağ pluton crops out as two isolated granitic bodies and is intruded into the Cretaceous blueschist assemblages (Kocasu formation) and ophiolitic rocks within the Izmir-Ankara-Erzincan suture zone (IAESZ). South Tepeldağ pluton (STP) is composed mainly of granodiorite with subordinate quartz diorite, which show transitional contacts. Aplitic dykes crosscut the pluton as well as the country rocks. STP includes a number of mafic microgranular enclaves (MME) of gabbro/diorite composition.</p><p>Geochemically, STP shows distinct I-type affinity with a metaluminous to slightly peraluminous (ASI ≤1.02) nature. The samples are medium-K to high-K calc-alkaline in character. They exhibit depletion in HFSE (Ti, Hf, Zr, Nb and Ta) compared to large ion lithophile elements (Rb, Ba, Th, U, K) and presents negative Nb, P, Ti anomalies. STP displays slight negative Eu anomalies (Eu/Eu* = 0.7–1.2), enrichment in LREE and flat HREE patterns in chondrite-normalized spider diagrams. MELTS modeling (with initial parameters of 1–3 kbar pressure, 2–3% water and QFM-NNO oxygen fugacity buffers) indicate that compositional variations in STP samples can be interpreted as a result of open system processes (assimilation fractional crystallization) rather than a reflection of fractional crystallization in the upper crustal magma chamber. All thermodynamic simulations dictate a crustal assimilation, especially in the late stages of the magmatic process, with a MgO, Na<sub>2</sub>O and Al<sub>2</sub>O<sub>3</sub>-rich assimilant similar to the suture zone (IAESZ) rocks.</p>


2021 ◽  
Author(s):  
Yavuz Özdemir ◽  
Çağrı Mercan ◽  
Vural Oyan ◽  
Ayşe Atakul-Özdemir ◽  
Nilgün Güleç ◽  
...  

<p>Maden Complex exposed in Eastern Turkey, is a succession of volcano-sedimentary rocks and tectonically overlain by Bitlis Metamorphics and Cretaceous ophiolitic rocks. The succession includes shallow-water deposits and deep marine pelagic sediments intercalated with pillow lavas ranging from a few centimeters to ten meters in diameter. The planktonic foraminiferal assemblages from micritic limestones and zircon U-Pb ages from selected sedimentary rocks indicate the age of Late Ypresian - Early Lutetian. Plagioclase and  clinopyroxenes are the main mineral phases, olivine rarely found as altered phenocrysts. Clinopyroxenes are augite and diopside, and their compositions are ranging between Wo<sub>44-51</sub>, En<sub>27-43</sub>, Fe<sub>10-21</sub>. The anorthite contents of plagioclases are between 32- 67 % in unaltered grains. The crystallization temperatures and pressures obtained from clinopyroxene chemistry are ranging from 1126 to 1250<sup>o</sup>C and 3 to 8 Kbar, respectively. The majority of the volcanic/subvolcanic rocks are subalkaline-tholeiitic basalts however; a few andesitic and rhyolitic derivatives are also present. The whole – rock and  Sr-Nd-Pb isotope compositions reveal that the  basaltic rocks are originated from E-MORB like asthenospheric mantle source without a subduction component.</p>


Sign in / Sign up

Export Citation Format

Share Document