scholarly journals Supplementary material to "Seismicity and seismotectonics of the Albstadt Shear Zone in the northern Alpine foreland"

Author(s):  
Sarah Mader ◽  
Joachim R. R. Ritter ◽  
Klaus Reicherter ◽  
2004 ◽  
Vol 97 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Susan Ivy-Ochs ◽  
J�rg Sch�fer ◽  
Peter W. Kubik ◽  
Hans-Arno Synal ◽  
Christian Schl�chter

Geomorphology ◽  
2018 ◽  
Vol 313 ◽  
pp. 13-26 ◽  
Author(s):  
Sebastian Baumann ◽  
Jörg Robl ◽  
Günther Prasicek ◽  
Bernhard Salcher ◽  
Melanie Keil

2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-109
Author(s):  
Paulo Castellan ◽  
Gustavo Viegas ◽  
Frederico M. Faleiros

Fabrics of the East Pernambuco shear zone (EPSZ) were studied via microstructural analysis, mineral chemistry and isochemical phase diagram modelling to constrain the pressure and temperature conditions of deformation during shearing. Granitic mylonites show fractured feldspar porphyroclasts embedded in a fine-grained, recrystallized quartzo-feldspathic matrix. These mylonites grade laterally into banded ultramylonites characterized by stretched feldspar clasts alternated with recrystallized quartz bands. Fractures in these ultramylonites are filled by phyllosilicates. The mineral chemistry of the feldspars points to systematic changes between porphyroclasts, grains within fractures and fine-grained mixtures. Quartz crystallographic fabrics in the mylonites suggest activation of prism slip, while the ultramylonites show the activation of both rhomb and basal slip systems. Thermodynamic modelling suggests that the mylonites were formed at 4.75 ± 0.25 kbar and 526 ± 9°C, while the ultramylonites yield conditions of 5.9 ± 1 kbar and 437 ± 17°C. These observations suggest that the EPSZ records a heterogeneous path of strain accommodation, marked by decreasing temperature from its western sector to its eastern termination. The differences in metamorphic conditions are consistent with a transitional, brittle–ductile strain regime. Such characteristics indicate that the EPSZ is a Neoproterozoic shear belt nucleated and heterogeneously exhumed at the brittle–ductile transition, possibly in an intracontinental setting.Supplementary Material: EPMA analysis of feldspars in Caruaru and Gravatá domains and T-X(O2) pseudosections are available at https://doi.org/10.6084/m9.figshare.c.5125957


Eos ◽  
2004 ◽  
Vol 85 (34) ◽  
pp. 322
Author(s):  
Sierd Cloetingh ◽  
Peter Ziegler ◽  
Tristan Cornu ◽  

2009 ◽  
Vol 137 (10) ◽  
pp. 3437-3455 ◽  
Author(s):  
Thomas Spengler ◽  
Jan H. Schween ◽  
Markus Ablinger ◽  
Günther Zängl ◽  
Joseph Egger

Abstract The summertime thermal circulation in the region of an asymmetric valley exit is investigated by means of observations and high-resolution model simulations. The northeastward-oriented Alpine Lech Valley opening into the Bavarian Alpine foreland has an eastern slope exceeding the western slope by about 15 km. Northerly winds along the eastern slope are frequently observed, reaching substantial strength during fair weather conditions. A field experiment has been conducted to explore this phenomenon and to pinpoint the connection of the northeasterly flow to the Lech Valley wind circulation. Numerical simulations have also been carried out to support the interpretation of the observations. It is found that the northerlies owe their existence to the dominantly easterly flow along the foothills of the Alps, which is partly induced by the Alpine heat low but may be strengthened by favorable synoptic conditions. Examples for both situations will be discussed. The diurnal flow in the Lech Valley has little obvious impact on these northeasterlies. On days with moderate synoptic easterly flow, a wake is present on the lee of the eastern slope of the exit region, accompanied by a shear zone along the edge of the wake. This shear zone is forced southward during the daytime because of thermally initiated pressure gradients between the Alpine foreland and the Alps, leading to sudden wind changes in the exit area at the time of its passage.


Sign in / Sign up

Export Citation Format

Share Document