shear zone
Recently Published Documents


TOTAL DOCUMENTS

2614
(FIVE YEARS 637)

H-INDEX

89
(FIVE YEARS 6)

2022 ◽  
Vol 117 (2) ◽  
pp. 273-304
Author(s):  
S. M. Hall ◽  
J. S. Beard ◽  
C. J. Potter ◽  
R. J. Bodnar ◽  
L. A. Neymark ◽  
...  

Abstract The Coles Hill uranium deposit, with an indicated resource of about 130 Mlb of U3O8, is the largest unmined uranium deposit in the United States. The deposit is hosted in the Taconian (approx. 480–450 Ma) Martinsville igneous complex, which consists of the Ordovician Leatherwood Granite (granodiorite) and the Silurian Rich Acres Formation (diorite). The host rock was metamorphosed to orthogneiss during the Alleghanian orogeny (approx. 325–260 Ma), when it also underwent dextral strike-slip movement along the Brookneal shear zone. During the Triassic, extensional tectonics led to the development of the Dan River Basin that lies east of Coles Hill. The mineralized zone is hosted in brittle structures in the footwall of the Triassic Chatham fault that forms the western edge of the basin. Within brittle fracture zones, uranium silicate and uranium-bearing fluorapatite with traces of brannerite form veins and breccia-fill with chlorite, quartz, titanium oxide, pyrite, and calcite. Uranium silicates also coat and replace primary titanite, zircon, ilmenite, and sulfides. Sodium metasomatism preceded and accompanied uranium mineralization, pervasively altering host rock and forming albite from primary feldspar, depositing limpid albite rims on igneous feldspar, altering titanite to titanium oxide and calcite, and forming riebeckite. Various geothermometers indicate temperatures of less than ~200°C during mineralization. In situ U-Pb analyses of titanite, Ti-oxide, and apatite, along with Rb/Sr and U/Pb isotope systematics of whole-rock samples, resolve the timing of geologic processes affecting Coles Hill. The host Leatherwood Granite containing primary euhedral titanite is dated at 450 to 445 Ma, in agreement with previously obtained ages from zircon in the Martinsville igneous complex. A regional metamorphic event at 330 to 310 Ma formed anhedral titanite and some apatite, reequilibrated whole-rock Rb/Sr and U-Pb isotopes, and is interpreted to have coincided with movement along the Brookneal shear zone. During shearing and metamorphism, primary refractory uranium-bearing minerals including titanite, zircon, and uranothorite were recrystallized, and uranium was liberated and mixed locally with hematite, clay, and other fine-grained minerals. Uranium mineralization was accompanied by a metasomatic episode between 250 and 200 Ma that reset the Rb-Sr and U-Pb isotope systems and formed titanium oxide and apatite that are associated and, in places, intimately intergrown with uranium silicate dating mineralization. This event coincides with rifting that formed the Dan River Basin and was a precursor to the breakup of Pangea. The orientation of late-stage tectonic stylolites is compatible with their formation during Late Triassic to Early Jurassic basin inversion, postdating the main stage of uranium mineralization and effectively dating mineralization as Mesozoic. Based on the close spatial and temporal association of uranium with apatite, we propose that uranium was carried as a uranyl-phosphate complex. Uranium was locally reduced by coupled redox reactions with ferrous iron and sulfide minerals in the host rock, forming uranium silicates. The release of calcium during sodium metasomatic alteration of primary calcic feldspar and titanite in the host rock initiated successive reactions in which uranium and phosphate in mineralizing fluids combined with calcium to form U-enriched fluorapatite. Based on the deposit mineralogy, oxygen isotope geochemistry, and trace element characteristics of uranium silicate and gangue minerals, the primary mineralizing fluids likely included connate and/or meteoric water sourced from the adjacent Dan River Basin. High heat flow related to Mesozoic rifting may have driven these (P-Na-F-rich) fluids through local aquifers and into basin margin faults, transporting uranium from the basin or mobilizing uranium from previously formed U minerals in the Brookneal shear zone, or from U-enriched older basement rock.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Sofia Laskari ◽  
Konstantinos Soukis ◽  
Stylianos Lozios ◽  
Daniel F. Stockli ◽  
Eirini M. Poulaki ◽  
...  

Detailed mapping and structural observations on the Cycladic Blueschist Unit (CBU) on Iraklia Island integrated with detrital zircon (DZ) U-Pb ages elucidate the Mesozoic pre-subduction and the Cenozoic orogenic evolution. Iraklia tectonostratigraphy includes a heterogeneous Lower Schist Fm., juxtaposed against a Marble Fm. and an overlying Upper Schist Fm. The contact is an extensional ductile-to-brittle-ductile, top-to-N shear zone, kinematically associated with the Oligo-Miocene exhumation. The DZ spectra of the Lower Schist have Gondwanan/peri-Gondwanan provenance signatures and point to Late Triassic Maximum Depositional Ages (MDAs). A quartz-rich schist lens yielded Precambrian DZ ages exclusively and is interpreted as part of the pre-Variscan metasedimentary Cycladic Basement, equivalent to schists of the Ios Island core. The Upper Schist represents a distinctly different stratigraphic package with late Cretaceous MDAs and dominance of Late Paleozoic DZ ages, suggestive of a more internal Pelagonian source. The contrast in the DZ U-Pb record between Lower and Upper Schist likely reflects the difference between a Paleotethyan and Neotethyan geodynamic imprint. The Triassic DZ input from eroded volcanic material is related to the final Paleotethys closure and Pindos/CBU rift basin opening, while late Cretaceous metamorphic/magmatic zircons and ~48–56 Ma zircon rims constrain the onset of Neotethyan convergence and high-pressure subduction metamorphism.


Author(s):  
William H Peck ◽  
Matthew P Quinan

The Morin terrane is an allochthonous crustal block in the southwestern Grenville Province with a relatively poorly-constrained metamorphic history. In this part of the Grenville Province, some terranes were part of the ductile middle crust during the 1.09–1.02 Ga collision of Laurentia with the Amazon craton (the Ottawan phase of the Grenvillian orogeny), while other terranes were part of the orogen’s superstructure. New U-Pb geochronology suggests that the Morin terrane experienced granulite-facies metamorphism during the accretionary Shawinigan orogeny (1.19–1.14 Ga) and again during the Ottawan. Seven zircon samples from the 1.15 Ga Morin anorthosite suite were dated to confirm earlier age determinations, and Ottawan metamorphic rims (1.08–1.07 Ga) were observed in two samples. U-Pb dating of titanite in nine marble samples surrounding the Morin anorthosite suite yielded mixed ages spanning between the Shawinigan and Ottawan metamorphisms (n=7), and predominantly Ottawan ages (n=2). Our results show that Ottawan zircon growth and resetting of titanite ages is spatially heterogeneous in the Morin terrane. Ages with a predominantly Ottawan signature are recognized in the Morin shear zone, which deforms the eastern lobe of the anorthosite, in an overprinted skarn zone on the western side of the massif, and in the Labelle shear zone that marks its western boundary. In the rest of the Morin terrane titanite with Shawinigan ages appear to have been only partially reset during the Ottawan. Further work is needed to better understand the relationship between the character of Ottawan metamorphism and resetting in different parts of the Morin terrane.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Hujun He ◽  
Yichen Zhao ◽  
Jian Zhang ◽  
Xingke Yang ◽  
Rui Xing ◽  
...  

Author(s):  
Daniel J. Bull ◽  
Joel A. Smethurst ◽  
Gerrit J. Meijer ◽  
I. Sinclair ◽  
Fabrice Pierron ◽  
...  

Vegetation enhances soil shearing resistance through water uptake and root reinforcement. Analytical models for soils reinforced with roots rely on input parameters that are difficult to measure, leading to widely varying predictions of behaviour. The opaque heterogeneous nature of rooted soils results in complex soil–root interaction mechanisms that cannot easily be quantified. The authors measured, for the first time, the shear resistance and deformations of fallow, willow-rooted and gorse-rooted soils during direct shear using X-ray computed tomography and digital volume correlation. Both species caused an increase in shear zone thickness, both initially and as shear progressed. Shear zone thickness peaked at up to 35 mm, often close to the thickest roots and towards the centre of the column. Root extension during shear was 10–30% less than the tri-linear root profile assumed in a Waldron-type model, owing to root curvature. Root analogues used to explore the root–soil interface behaviour suggested that root lateral branches play an important role in anchoring the roots. The Waldron-type model was modified to incorporate non-uniform shear zone thickness and growth, and accurately predicted the observed, up to sevenfold, increase in shear resistance of root-reinforced soil.


2022 ◽  
Vol 577 ◽  
pp. 117273
Author(s):  
Christopher H. Scholz ◽  
Eunseo Choi

Sign in / Sign up

Export Citation Format

Share Document