mineral chemistry
Recently Published Documents


TOTAL DOCUMENTS

1151
(FIVE YEARS 398)

H-INDEX

47
(FIVE YEARS 7)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Micol Bussolesi ◽  
Giovanni Grieco ◽  
Alessandro Cavallo ◽  
Federica Zaccarini

Mg-Fe2+ diffusion patterns in olivine and chromite are useful tools for the study of the thermal history of ultramafic massifs. In the present contribution, we applied the exponential modeling of diffusion patterns to geothermometry and geospeedometry of chromitite ores from two different ophiolite contexts. The Iballe ophiolite (Northern Albania) hosts several chromitite pods within dunites. Primary and re-equilibrated Mg#, estimated by using an exponential function, provided re-equilibration and primary temperatures ranging between 677 and 996 °C for chromitites and between 527 and 806 °C for dunites. Cooling rates for chromitites are higher than for dunites, suggesting a different genesis for the two lithologies, confirmed also by spinel mineral chemistry. Chromitites with MORB affinity formed in a SSZ setting at a proto-forearc early stage, explaining the higher cooling rates, while dunites, with boninitic affinity, were formed deeper in the mantle in a more mature subduction setting. At the Nea Roda ophiolite (Northern Greece) olivine in chromitites do not show Mg-Fe variations, and transformation into ferrian chromite produced “fake” diffusion patterns within chromite. The absence of diffusion patterns and the low estimated temperatures (550–656 °C) suggest that Nea Roda chromitites were completely re-equilibrated during an amphibolite-facies metamorphic event that obliterated all primary features.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Daniel Layton-Matthews ◽  
M. Beth McClenaghan

This paper provides a summary of traditional, current, and developing exploration techniques using indicator minerals derived from glacial sediments, with a focus on Canadian case studies. The 0.25 to 2.0 mm fraction of heavy mineral concentrates (HMC) from surficial sediments is typically used for indicator mineral surveys, with the finer (0.25–0.50 mm) fraction used as the default grain size for heavy mineral concentrate studies due to the ease of concentration and separation and subsequent mineralogical identification. Similarly, commonly used indicator minerals (e.g., Kimberlite Indicator Minerals—KIMs) are well known because of ease of optical identification and their ability to survive glacial transport. Herein, we review the last 15 years of the rapidly growing application of Automated Mineralogy (e.g., MLA, QEMSCAN, TIMA, etc) to indicator mineral studies of several ore deposit types, including Ni-Cu-PGE, Volcanogenic Massive Sulfides, and a variety of porphyry systems and glacial sediments down ice of these deposits. These studies have expanded the indicator mineral species that can be applied to mineral exploration and decreased the size of the grains examined down to ~10 microns. Chemical and isotopic fertility indexes developed for bedrock can now be applied to indicator mineral grains in glacial sediments and these methods will influence the next generation of indicator mineral studies.


2021 ◽  
Vol 26 (53) ◽  
pp. 1-17
Author(s):  
Nomuulin Amarbayar ◽  
Noriyoshi Tsuchiya ◽  
Otgonbayar Dandar ◽  
Atsushi Okamoto ◽  
Masaoki Uno ◽  
...  

Serpentinization of ultramafic rocks in ophiolites is key to understanding the global cycle of elements and changes in the physical properties of lithospheric mantle. Mongolia, a central part of the Central Asian Orogenic Belt (CAOB), contains numerous ophiolite complexes, but the metamorphism of ultramafic rocks in these ophiolites has been little studied. Here we present the results of our study of the serpentinization of an ultramafic body in the Manlay Ophiolite, southern Mongolia. The ultramafic rocks were completely serpentinized, and no relics of olivine or orthopyroxene were found. The composition of Cr-spinels [Mg# = Mg/(Mg + Fe2+) = 0.54 and Cr# = Cr/(Cr + Al) = 0.56] and the bulk rock chemistry (Mg/Si = 1.21–1.24 and Al/Si < 0.018) of the serpentinites indicate their origin from a fore-arc setting. Lizardite occurs in the cores and rims of mesh texture (Mg# = 0.97) and chrysotile is found in various occurrences, including in bastite (Mg# = 0.95), mesh cores (Mg# = 0.92), mesh rims (Mg# = 0.96), and later-stage large veins (Mg# = 0.94). The presence of lizardite and chrysotile and the absence of antigorite suggests low-temperature serpentinization (<300 °C). The lack of brucite in the serpentinites implies infiltration of the ultramafic rocks of the Manlay Ophiolite by Si-rich fluids. Based on microtextures and mineral chemistry, the serpentinization of the ultramafic rocks in the Manlay Ophiolite took place in three stages: (1) replacement of olivine by lizardite, (2) chrysotile formation (bastite) after orthopyroxene and as a replacement of relics of olivine, and (3) the development of veins of chrysotile that cut across all previous textures. The complex texture of the serpentinites in the Manlay Ophiolite indicates multiple stages of fluid infiltration into the ultramafic parts of these ophiolites in southern Mongolia and the CAOB.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Karol Zglinicki ◽  
Rafał Małek ◽  
Krzysztof Szamałek ◽  
Stanisław Wołkowicz

The European Commission has adopted the European Green Deal strategy, which aims to achieve climate neutrality in the EU by 2050. To achieve this goal, it is necessary to shift the economy toward the use of green and renewable energy. Critical raw materials (CRMs), Li, Co, REE, Te, Sc and others, are used in renewable energy sources (RES) production. The EU lacks its own CRM deposits, and additionally, the access to already identified deposits is limited, which is making the EU countries search for alternative CRM sources. One such source of CRMs may be mining waste generated on the Indonesian island of Bangka as a result of processing cassiterite-bearing sands. Studies of the mineral composition of the waste using the XRD method reveal rich contents of xenotime (0.79–17.55 wt%), monazite (1.55–21.23 wt%), zircon (1.87–64.35 wt%) and other minerals, carriers of valuable metals, such as Sn, Ti, Nb, Ta. The point mineral chemistry analyses were performed using EPMA. Xenotime is the main carrier of heavy rare earth elements (HREE), especially the “most critical” HREEs: Gd2O3 (1.42–7.16 wt%), Dy2O3 (2.28–11.21 wt%), Er2O3 (2.44–7.85 wt%), and Yb2O3 (1.71–7.10 wt%). Xenotime is characterized by a complex internal structure resulting from metasomatic processes occurring during their formation. In SEM-BSE imaging, they show zonation of internal structure, which is the effect of an HREE, Y, Si and U substitution in the crystal structure. On the other hand, thorite ThSiO4 and uranothorite (Th,U)SiO4 inclusions are present in xenotimes. The ICP-MS/ES studies of tailings reveal very high contents of HREE + Y (up to 7.58 wt%), U (up to 0.11), Th (up to 0.75 wt%) and Sc (132 ppm). A CRM source diversification is part of the strategy to ensure the security of raw materials for countries of the European Union and the green transformation of the continent. Bilateral EU–Indonesia cooperation in the geological exploration and development of primary and secondary sources may contribute to an increase in the supply of HREEs to the global market.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Christoph Gauert ◽  
Armin Zeh

The about 2055-Ma-old mafic to ultramafic Uitkomst Complex in the Mpumalanga Province of South Africa hosts the low-grade-large-tonnage Ni-Cu-PGE deposit, Nkomati. The complex is regarded to represent a satellite to the Bushveld Complex and a feeder to an eroded magmatic reservoir in the southeast. Aeromagnetic surveys and previous drilling indicated an overall northwestern-downdip extension of the complex, but the question is to what extent and in which expression can the complete intrusion be found under cover in the northwest? Answering this, a mineralogical, geochemical and geochronological investigation of a borehole intersection of the whole complex at Little Mamre was carried out, using petrography, XRF, EPMA and LA-ICP-MS U–Pb analyses of zircons for age determination. Although the total thickness of the rock units is larger than to the southeast, emplacement, litho- and mineral chemistry trends, expression of alteration mineralogy and style of sulphide mineralisation are similar. The amount of sulphide mineralisation is on average less than in the southeast. The upper ultramafic unit contains, more frequently, pegmatoidal sections, and the Chromitiferous Harzburgite unit has less massive chromitite layers than the southeastern parts of the complex, whereas the gabbro(-norite) units contain more interstitial liquid with late-stage minerals. The findings confirm that the anvil-shaped intrusion in cross section continues with increased thickness towards northwest at a shallow dip; although approaching the deeper part of the igneous reservoir, mineral compositions are partially more evolved. The overall mineralogical consistency downdip supports a situation of multiple magma replenishment along a flat-lying, northwest–southeast trending conduit, resulting in an evolved cumulus mineral assemblage in the upper part.


2021 ◽  
Vol 82 (3) ◽  
pp. 61-63
Author(s):  
Lyubomirka Macheva ◽  
Philip Machev ◽  
Rossitsa Vassilevа ◽  
Yulia Plotkina

North-northeast of the village of Ilinden (Southern Pirin Mnt.) three eclogite boudins were separated on the geological map in scale 1:50 000 (Sarov, 2010). The rocks belong to the Slasten lithotectonic unit. The mineral assemblage and mineral chemistry do not allow these rocks to be classified as eclogites. They can be considered as eclogite-like ones, formed by postmagmatic-metasomatic alteration of the host rocks. Based on LA-ICP-MS sphene U-Pb dating, eclogite-like rocks yield a Late Jurassic age (160±19 Ma).


Sign in / Sign up

Export Citation Format

Share Document