brittle ductile transition
Recently Published Documents


TOTAL DOCUMENTS

560
(FIVE YEARS 146)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 29 (2) ◽  
Author(s):  
Dongdong Wang ◽  
Fushi Li ◽  
Xiangming Xu ◽  
Lin Zhong ◽  
Chong Guan ◽  
...  

Author(s):  
Irina P Chubarenko

Abstract Microplastic particles (MPs, <5 mm) are found in marine ice in larger quantities than in seawater, however, the distribution pattern within the ice cores is not consistent. To get insights into the most general physical processes behind interactions of ice and plastic particles in cool natural environments, information from academic and applied research is integrated and verified against available field observations. Non-polar molecules of common-market plastics are hydrophobic, so MPs are weak ice nucleators, are repelled from water and ice, and concentrate within air bubbles and brine channels. A large difference in thermal properties of ice and plastics favours concentration of MPs at the ice surface during freeze/thaw cycles. Under low environmental temperatures, falling in polar regions below the glass / brittle-ductile transition temperatures of the common-use plastics, they become brittle. This might partially explain the absence of floating macroplastics in polar waters. Freshwater freezes at the temperature well below that of its maximum density, so the water column is stably stratified, and MPs eventually concentrate at the ice surface and in air bubbles. In contrast, below growing sea ice, mechanisms of suspension freezing under conditions of (thermal plus haline) convection should permanently entangle MPs into ice. During further sea ice growth and aging, MPs are repelled from water and ice into air bubbles, brine channels, and to the upper/lower boundaries of the ice column. Sea ice permeability, especially while melting periods, can re-distribute sub-millimeter MPs through the brine channels, thus potentially introducing the variability of contamination with time. In accord with field observations, analysis reveals several competing factors that influence the distribution of MPs in sea ice. A thorough sampling of the upper ice surface, prevention of brine leakage while sampling and handling, considering the ice structure while segmenting the ice core – these steps may be advantageous for further understanding the pattern of plastic contamination in natural ice.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 233
Author(s):  
Shenxin Yin ◽  
Huapan Xiao ◽  
Wenjun Kang ◽  
Heng Wu ◽  
Rongguang Liang

The damaging of ZnSe crystal has a significant impact on its service performance and life. Based on the specific cutting energies for brittle and ductile mode machining, a model is proposed to evaluate the damage depth in the shoulder region of ZnSe crystal during single point diamond machining. The model considers the brittle-ductile transition and spring back of ZnSe crystal. To verify the model, the elastic modulus, hardness, spring back, and friction coefficient of ZnSe crystal are measured by nanoindentation and nanoscratch tests, and its critical undeformed chip thickness is obtained by spiral scratching. Meanwhile, orthogonal cutting experiments are conducted to obtain the different shoulder regions and cutting surfaces. The shoulder damage depth is analyzed, indicating that the effect of the feed on the damage depth at a high cutting depth is stronger than that at a low one. The model is verified to be effective with an average relative error of less than 7%. Then, the model is used to calculate the critical processing parameters and achieve a smooth ZnSe surface with a roughness Sa = 1.0 nm. The model is also extended to efficiently predict the bound of the subsurface damage depth of a cutting surface. The research would be useful for the evaluation of surface and subsurface damages during the ultra-precision machining of ZnSe crystal.


2021 ◽  
Author(s):  
◽  
Konstantinos Michailos

<p>This thesis documents a detailed examination of the seismic activity and characteristics of crustal deformation along the central Alpine Fault, a major obliquely convergent plate-boundary fault. Paleoseismic evidence has established that the Alpine Fault produces large to great (M7−8) earthquakes every 250−300 years, in a quasi-periodic manner, with the last surface-rupturing earthquake occurring in 1717. This renders the fault late in its typical earthquake cycle, posing substantial seismic risk to southern and central New Zealand. Understanding the seismic and tectonic character of this fault may yield information of both societal and scientific significance regarding seismic hazard and late-interseismic processes leading up to a large earthquake. However, the central Alpine Fault is currently seismically quiescent when compared to adjacent regions, and therefore requires detailed, long-duration observations to study seismotectonic processes. The work in this thesis addresses the need for a greater understanding of along-strike variations in seismic character of the Alpine Fault ahead of an anticipated large earthquake.  To achieve observations with high spatial and temporal resolution across the length of the central Alpine Fault, I use 8.5 years of continuous seismic data from the Southern Alps Microearthquake Borehole Array (SAMBA), and data from four other temporary seismic networks and five local GeoNet permanent sites. Incorporating all of these temporary and permanent seismic sites provides us with a dense composite network of seismometers. Without such a dense network, homogeneous examination of the characteristics of low-magnitude seismicity near the Alpine Fault would be impossible.  Using this dataset, I have constructed the most extensive microearthquake catalog for the central Alpine Fault region to date, containing 9,111 earthquakes and covering the time between late 2008 and early 2017. To construct this catalog I created an objective workflow to ensure catalog uniformity. Overall, 7,719 earthquakes were successfully relocated with location uncertainties generally ≤ 0.5 km in both the horizontal and vertical directions. The majority of the earthquakes were found to occur southeast of the Alpine Fault (i.e. in the hanging-wall). I observed a lack of seismicity beneath Aoraki/Mount Cook that has previously been shown to be associated with locally high uplift rates (6–10 mm/yr) and high geothermal gradients (∼60◦C/km). Seismogenic cut-off depths were observed to significantly vary along the strike of the Alpine Fault, ranging from 8 km beneath the highest topography to 20 km in the adjacent areas.  To quantify the scale of the seismic deformation, a new local magnitude scale was also derived, corrected for geometric spreading, attenuation and site terms based on individually calculated GeoNet moment magnitude (Mw) values. Earthquake local magnitudes range between ML –1.2 and 4.6 and the catalog is complete above ML 1.1.  To examine the stress regime near the central Alpine Fault, I built a new data set of 845 focal mechanisms from earthquakes in our catalog. This was achieved by manually determining P wave arrival polarity picks from all earthquakes larger than ML 1.5. In order to determine the orientations and characteristics of the stress parameters, I grouped these focal mechanisms and performed stress inversion calculations that provided an average maximum horizontal compressive stress orientation, SHmax, of 121±11◦ , which is uniform within uncertainty along the length of the central Southern Alps. I observed an average angle of 65◦ between the SHmax and the strike of the Alpine Fault, which is consistent with results from similar previous studies in the northern and southern sections of the Alpine Fault. This implies that the Alpine Fault is misoriented for reactivation, in the prevailing stress field.  Using a 1-D steady-state thermal structure model constrained by seismicity and thermochronology data, I investigated the crustal thermal structure and vertical kinematics of the central Southern Alps orogen. The short-term seismicity data and longer-term thermochronology data impose complementary constraints on the model. I observed a large variation in exhumation rate estimates (1–8 mm/yr) along the length of the Alpine Fault, with maximum calculated values observed near Aoraki/Mount Cook. I calculated the temperature at the brittle-ductile transition zone, which ranges from 440 to 457◦C in the different models considered. This temperature is slightly hotter than expected for crust composed by quartz-rich rocks, but consistent with the presence of feldspar-rich mafic rocks in parts of the crust.</p>


2021 ◽  
Author(s):  
◽  
Benjamin Carson

<p>A single fault process model was created to test the sensitivity of each TOUGH2 rock parameter on the convection flow rate and fluid enthalpy within a simulated fault. With a fixed temperature base the single fault process model found a negative correlation with the fault permeability and convection fluid enthalpy and a positive liner increases in mass flow with fault area.  Next a large scale Supercritical TOUGH2 model was built to simulate the entire Rotokawa geothermal system incorporating findings of the fault process model. The single porosity model 20 x 10 x 6km with 20 layers and 57,600 grid blocks. Unlike previous models of the Rotokawa reservoir and larger scale TVZ numerical models a fixed temperature base with a no flow boundary was used to represent the brittle ductile transition. The model permeability below the currently explored reservoir was bounded by 3-D magnetologic data. Lower resistivity zones were given higher bulk permeability in the model.  The model resulted in a comparable temperature and pressure match to the Rotokawa natural state conditions. Convection of supercritical fluid reached depths shallower than -4500mRL but only occurred in zones with a bulk vertical permeability less than 2 mD. Further modelling work with a supercritical wellbore coupled reservoir model will be need to evaluate the potential deliverability of a super critical well from the Rotokawa geothermal system.</p>


2021 ◽  
Author(s):  
◽  
Konstantinos Michailos

<p>This thesis documents a detailed examination of the seismic activity and characteristics of crustal deformation along the central Alpine Fault, a major obliquely convergent plate-boundary fault. Paleoseismic evidence has established that the Alpine Fault produces large to great (M7−8) earthquakes every 250−300 years, in a quasi-periodic manner, with the last surface-rupturing earthquake occurring in 1717. This renders the fault late in its typical earthquake cycle, posing substantial seismic risk to southern and central New Zealand. Understanding the seismic and tectonic character of this fault may yield information of both societal and scientific significance regarding seismic hazard and late-interseismic processes leading up to a large earthquake. However, the central Alpine Fault is currently seismically quiescent when compared to adjacent regions, and therefore requires detailed, long-duration observations to study seismotectonic processes. The work in this thesis addresses the need for a greater understanding of along-strike variations in seismic character of the Alpine Fault ahead of an anticipated large earthquake.  To achieve observations with high spatial and temporal resolution across the length of the central Alpine Fault, I use 8.5 years of continuous seismic data from the Southern Alps Microearthquake Borehole Array (SAMBA), and data from four other temporary seismic networks and five local GeoNet permanent sites. Incorporating all of these temporary and permanent seismic sites provides us with a dense composite network of seismometers. Without such a dense network, homogeneous examination of the characteristics of low-magnitude seismicity near the Alpine Fault would be impossible.  Using this dataset, I have constructed the most extensive microearthquake catalog for the central Alpine Fault region to date, containing 9,111 earthquakes and covering the time between late 2008 and early 2017. To construct this catalog I created an objective workflow to ensure catalog uniformity. Overall, 7,719 earthquakes were successfully relocated with location uncertainties generally ≤ 0.5 km in both the horizontal and vertical directions. The majority of the earthquakes were found to occur southeast of the Alpine Fault (i.e. in the hanging-wall). I observed a lack of seismicity beneath Aoraki/Mount Cook that has previously been shown to be associated with locally high uplift rates (6–10 mm/yr) and high geothermal gradients (∼60◦C/km). Seismogenic cut-off depths were observed to significantly vary along the strike of the Alpine Fault, ranging from 8 km beneath the highest topography to 20 km in the adjacent areas.  To quantify the scale of the seismic deformation, a new local magnitude scale was also derived, corrected for geometric spreading, attenuation and site terms based on individually calculated GeoNet moment magnitude (Mw) values. Earthquake local magnitudes range between ML –1.2 and 4.6 and the catalog is complete above ML 1.1.  To examine the stress regime near the central Alpine Fault, I built a new data set of 845 focal mechanisms from earthquakes in our catalog. This was achieved by manually determining P wave arrival polarity picks from all earthquakes larger than ML 1.5. In order to determine the orientations and characteristics of the stress parameters, I grouped these focal mechanisms and performed stress inversion calculations that provided an average maximum horizontal compressive stress orientation, SHmax, of 121±11◦ , which is uniform within uncertainty along the length of the central Southern Alps. I observed an average angle of 65◦ between the SHmax and the strike of the Alpine Fault, which is consistent with results from similar previous studies in the northern and southern sections of the Alpine Fault. This implies that the Alpine Fault is misoriented for reactivation, in the prevailing stress field.  Using a 1-D steady-state thermal structure model constrained by seismicity and thermochronology data, I investigated the crustal thermal structure and vertical kinematics of the central Southern Alps orogen. The short-term seismicity data and longer-term thermochronology data impose complementary constraints on the model. I observed a large variation in exhumation rate estimates (1–8 mm/yr) along the length of the Alpine Fault, with maximum calculated values observed near Aoraki/Mount Cook. I calculated the temperature at the brittle-ductile transition zone, which ranges from 440 to 457◦C in the different models considered. This temperature is slightly hotter than expected for crust composed by quartz-rich rocks, but consistent with the presence of feldspar-rich mafic rocks in parts of the crust.</p>


2021 ◽  
Author(s):  
◽  
Benjamin Carson

<p>A single fault process model was created to test the sensitivity of each TOUGH2 rock parameter on the convection flow rate and fluid enthalpy within a simulated fault. With a fixed temperature base the single fault process model found a negative correlation with the fault permeability and convection fluid enthalpy and a positive liner increases in mass flow with fault area.  Next a large scale Supercritical TOUGH2 model was built to simulate the entire Rotokawa geothermal system incorporating findings of the fault process model. The single porosity model 20 x 10 x 6km with 20 layers and 57,600 grid blocks. Unlike previous models of the Rotokawa reservoir and larger scale TVZ numerical models a fixed temperature base with a no flow boundary was used to represent the brittle ductile transition. The model permeability below the currently explored reservoir was bounded by 3-D magnetologic data. Lower resistivity zones were given higher bulk permeability in the model.  The model resulted in a comparable temperature and pressure match to the Rotokawa natural state conditions. Convection of supercritical fluid reached depths shallower than -4500mRL but only occurred in zones with a bulk vertical permeability less than 2 mD. Further modelling work with a supercritical wellbore coupled reservoir model will be need to evaluate the potential deliverability of a super critical well from the Rotokawa geothermal system.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Claudio Petrini ◽  
Claudio Madonna ◽  
Taras Gerya

AbstractFluid flow through crustal rocks is controlled by permeability. Underground fluid flow is crucial in many geotechnical endeavors, such as CO2 sequestration, geothermal energy, and oil and gas recovery. Pervasive fluid flow and pore fluid pressure control the strength of a rock and affect seismicity in tectonic and geotechnical settings. Despite its relevance, the evolution of permeability with changing temperature and during deformation remains elusive. In this study, the permeability of Westerly granite at an effective pressure of 100 MPa was measured under conditions near its brittle–ductile transition, between 650 °C and 850 °C, with a strain rate on the order of 2·10–6 s−1. To capture the evolution of permeability with increasing axial strain, the samples were continuously deformed in a Paterson gas-medium triaxial apparatus. The microstructures of the rock were studied after testing. The experiments reveal an inversion in the permeability evolution: an initial decrease in permeability due to compaction and then an increase in permeability shortly before and immediately after failure. The increase in permeability after failure, also present at high temperatures, is attributed to the creation of interconnected fluid pathways along the induced fractures. This systematic increase demonstrates the subordinate role that temperature dilatancy plays in permeability control compared to stress and its related deformation. These new experimental results thus demonstrate that permeability enhancement under brittle–ductile conditions unveils the potential for EGS exploitation in high-temperature rocks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanta Miyano ◽  
Koki Aizawa ◽  
Takeshi Matsushima ◽  
Azusa Shito ◽  
Hiroshi Shimizu

AbstractSubsurface structures may control the migration of magma beneath a volcano. We used high-resolution seismic tomography to image a low- P-wave velocity (Vp) zone beneath Unzen Volcano, Japan, at depths of 3–16 km beneath sea level. The top of this low-Vp zone is located beneath Mt. Fugendake of Unzen volcano, which emitted 0.21 km3 of dacitic magma as lava domes and pyroclastic flows during eruptions in 1990–1995. Based on hypocenter migrations prior to the 1990–1995 eruptions and modeled pressure source locations for recorded crustal deformation, we conclude that the magma for the 1990–1995 eruptions migrated obliquely upward along the top of the low-Vp zone. As tectonic earthquakes occurred above the deeper part of the low-Vp zone, the deep low-Vp zone is interpreted to be a high-temperature region (> 400 °C) overlying the brittle–ductile transition. By further considering Vs and Vp/Vs structures, we suggest that the deeper part of the low-Vp zone constitutes a highly crystalized magma-mush reservoir, and the shallower part a volatile-rich zone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Parisio ◽  
Keita Yoshioka ◽  
Kiyotoshi Sakaguchi ◽  
Ryota Goto ◽  
Takahiro Miura ◽  
...  

AbstractDeveloping high-enthalpy geothermal systems requires a sufficiently permeable formation to extract energy through fluid circulation. Injection experiments above water’s critical point have shown that fluid flow can generate a network of highly conductive tensile cracks. However, what remains unclear is the role played by fluid and solid rheology on the formation of a dense crack network. The decrease of fluid viscosity with temperature and the thermally activated visco-plasticity in rock are expected to change the deformation mechanisms and could prevent the formation of fractures. To isolate the solid rheological effects from the fluid ones and the associated poromechanics, we devise a hydro-fracture experimental program in a non-porous material, polymethyl methacrylate (PMMA). In the brittle regime, we observe rotating cracks and complex fracture patterns if a non-uniform stress distribution is introduced in the samples. We observe an increase of ductility with temperature, hampering the propagation of hydraulic fractures close to the glass transition temperature of PMMA, which acts as a limit for brittle fracture propagation. Above the glass transition temperature, acoustic emission energy drops of several orders of magnitude. Our findings provide a helpful guidance for future studies of hydro-fracturing of supercritical geothermal systems.


Sign in / Sign up

Export Citation Format

Share Document