scholarly journals Development of an image processing method for wake meandering studies and its application on data sets from scanning wind lidar and large-eddy simulation

2021 ◽  
Author(s):  
Maria Krutova ◽  
Mostafa Bakhoday-Paskyabi ◽  
Joachim Reuder ◽  
Finn Gunnar Nielsen

Abstract. Wake meandering studies require knowledge of the instantaneous wake shape and its evolution. Scanning lidar data are used to identify the wake pattern behind offshore wind turbines but do not immediately reveal the wake shape. The precise detection of the wake shape and centerline helps to build models predicting wake behavior. The conventional Gaussian fit methods are reliable in the near-wake area but lose precision with the distance from the rotor and require good data resolution for an accurate fit. The thresholding methods usually imply a fixed value or manual selection of a threshold, which hinders the wake detection on a large data set. We propose an automatic thresholding method for the wake shape and centerline detection, which is less dependent on the data resolution and can also be applied to the image data. We show that the method performs reasonably well on large-eddy simulation data and apply it to the data set containing lidar measurements of the two wakes. Along with the wake detection method, we use image processing statistics, such as entropy analysis, to filter and classify lidar scans. The image processing method is developed to reduce dependency on the supplementary reference data such as wind speed and direction. We show that the centerline found with the image processing is in a good agreement with the manually detected centerline and the Gaussian fit method. We also discuss a potential application of the method to separate the near and far wakes and to estimate the wake direction.

Sign in / Sign up

Export Citation Format

Share Document