Large Eddy Simulation of an ultra-micro combustion chamber

Author(s):  
A. Minotti ◽  
Enrico Sciubba
Author(s):  
Florent Duchaine ◽  
Jérôme Dombard ◽  
Laurent Gicquel ◽  
Charlie Koupper

To study the effects of combustion chamber dynamics on a turbine stage aerodynamics and thermal loads, an integrated Large-Eddy Simulation of the FACTOR combustion chamber simulator along with its high pressure turbine stage is performed and compared to a standalone turbine stage computation operated under the same mean conditions. For this specific configuration, results illustrate that the aerodynamic expansion of the turbine stage is almost insensitive to the inlet turbulent conditions. However, the temperature distribution in the turbine passages as well as on the stator vane and rotor blade walls are highly impacted by these inlet conditions: underlying the importance of inlet conditions in turbine stage computations and the potential of integrated combustion chamber / turbine simulations in such a context.


Author(s):  
Carlos Pérez Arroyo ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Nicolas Odier ◽  
...  

Abstract The design optimization of aviation propulsion systems by means of computational fluid dynamics is key to increase their efficiency and reduce pollutant and noise emissions. The recurrent increase in available computing power allows nowadays to perform unsteady high-fidelity computations of the different components of a gas turbine. However, these simulations are often made independently of each other and they only share average quantities at interfaces. In this work, the methodology and first results for a sectoral large-eddy simulation of an integrated high-pressure compressor and combustion chamber of a typical turbine engine architecture is proposed. In the simulation, the compressor is composed of one main blade and one splitter blade, two radial diffuser vanes and six axial diffuser vanes. The combustion chamber is composed of the contouring casing, the flame-tube and a T-shaped vaporizer. This integrated computation considers a good trade-off between accuracy of the simulation and affordable CPU cost. Results are compared between the stand-alone combustion chamber simulation and the integrated one in terms of global, integral and average quantities. It is shown that pressure perturbations generated by the interaction of the impeller blades with the diffuser vanes are propagated through the axial diffuser and enter the combustion chamber through the dilution holes and the vaporizer. Due to the high amplitude of the pressure perturbations, several variables are perturbed at the blade-passing frequency and multiples. This is also reflected on combustion where two broadband peaks appear for the global heat release.


2015 ◽  
Vol 40 (7) ◽  
pp. 3098-3109 ◽  
Author(s):  
M.A. Abdel-Raheem ◽  
S.S. Ibrahim ◽  
W. Malalasekera ◽  
A.R. Masri

Author(s):  
Martin Thomas ◽  
Jerome Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Charlie Koupper

Abstract Development goals for next generation aircraft engines are mainly determined by the need to reduce fuel consumption and environmental impact. To reduce NOx emissions lean combustion technologies will be applied in future development projects. The more compact design and the absence of dilution holes in this type of engines shortens residence times in the combustion chamber and reduces mixing which results in higher levels of swirl, turbulence and temperature distortions at the exit of the combustion chamber. For these engines interactions between components are more important, so that the traditional engine design approach of component-wise optimization will have to be adapted. To study new lean burn architectures the European FACTOR project investigates the transport of hot streaks produced by a non-reactive combustor simulator through a single stage high-pressure turbine. In this work high-fidelity Large Eddy Simulation (LES) of combustor and complete high-pressure turbine are discussed and validated against experimental data. Measurement data is available on P40 (exit of the combustion chamber), P41 (exit of the stator) and P42 (exit of the rotor) and generally shows a good agreement to LES data.


Sign in / Sign up

Export Citation Format

Share Document