scholarly journals RANS modelling of a single wind turbine wake in the unstable surface layer

2021 ◽  
Author(s):  
Mads Baungaard ◽  
Maarten Paul van der Laan ◽  
Mark Kelly

Abstract. Unstable atmospheric conditions are often observed during the daytime over land and for significant periods offshore, and are hence relevant for wake studies. A simple k-ε RANS turbulence model for simulation of wind turbine wakes in the unstable surface layer is presented, which is based on Monin-Obukhov similarity theory (MOST). The turbulence model parametrizes buoyant production of turbulent kinetic energy (TKE) without the use of an active temperature equation, and flow balance is ensured throughout the domain by modifications of the turbulence transport equations. Large eddy simulations and experimental data from the literature are used for validation of the model.

2007 ◽  
Vol 75 ◽  
pp. 012041 ◽  
Author(s):  
A Jimenez ◽  
A Crespo ◽  
E Migoya ◽  
J Garcia

Author(s):  
Tarak N. Nandi ◽  
Andreas Herrig ◽  
James G. Brasseur

Relevant to drivetrain bearing fatigue failures, we analyse non-steady wind turbine responses from interactions between energy-dominant daytime atmospheric turbulence eddies and the rotating blades of a GE 1.5 MW wind turbine using a unique dataset from a GE field experiment and computer simulation. Time-resolved local velocity data were collected at the leading and trailing edges of an instrumented blade together with generator power, revolutions per minute, pitch and yaw. Wind velocity and temperature were measured upwind on a meteorological tower. The stability state and other atmospheric conditions during the field experiment were replicated with a large-eddy simulation in which was embedded a GE 1.5 MW wind turbine rotor modelled with an advanced actuator line method. Both datasets identify three important response time scales: advective passage of energy-dominant eddies (≈25–50 s), blade rotation (once per revolution (1P), ≈3 s) and sub-1P scale (<1 s) response to internal eddy structure. Large-amplitude short-time ramp-like and oscillatory load fluctuations result in response to temporal changes in velocity vector inclination in the aerofoil plane, modulated by eddy passage at longer time scales. Generator power responds strongly to large-eddy wind modulations. We show that internal dynamics of the blade boundary layer near the trailing edge is temporally modulated by the non-steady external flow that was measured at the leading edge, as well as blade-generated turbulence motions. This article is part of the themed issue ‘Wind energy in complex terrains’.


2018 ◽  
Vol 115 ◽  
pp. 1166-1176 ◽  
Author(s):  
Nima Sedaghatizadeh ◽  
Maziar Arjomandi ◽  
Richard Kelso ◽  
Benjamin Cazzolato ◽  
Mergen H. Ghayesh

Sign in / Sign up

Export Citation Format

Share Document