Environmental Research Letters
Latest Publications


TOTAL DOCUMENTS

5881
(FIVE YEARS 3584)

H-INDEX

125
(FIVE YEARS 54)

Published By Iop Publishing

1748-9326

Author(s):  
Bingyi Wu ◽  
Zhenkun Li ◽  
Jennifer A. Francis ◽  
Shuoyi Ding

Abstract Arctic warming and its association with the mid-latitudes have been hot topic over the past two decades. Although many studies have explored these issues it is not clear that how their linkage has changed over time. The results show that winter low tropospheric temperatures in Asia experienced two phases over the past two decades. Phase I (2007/2008 to 2012/2013) was characterized by a warm Arctic and cold Eurasia, and phase II by a warm Arctic and warm Eurasia (2013/2014 to 2018/2019). A strengthened association in winter temperature between the Arctic and Asia occurred during phase I, followed by a weakened linkage during phase II. Simulation experiments forced by observed Arctic sea ice variability largely reproduce observed patterns, suggesting that Arctic sea ice loss contributes to phasic (or low-frequency) variations in winter atmosphere and make the Arctic-Asia temperature association fluctuate over time. The weakening of the Arctic-Asia linkage post-2012/2013 was associated with amplified and expanded Arctic warming. The corresponding anomalies in SLP resembled a positive phase North Atlantic Oscillation (NAO) during phase II. This study implies that the phasic warm Arctic-cold Eurasia and warm Arctic-warm Eurasia patterns would alternately happen in the context of Arctic sea ice loss, which increase the difficulty to correctly predict Asian winter temperature.


Author(s):  
Amy Collins ◽  
Mark N Grote ◽  
Tim Caro ◽  
Aniruddha Ghosh ◽  
James H Thorne ◽  
...  

Abstract The Reduced Emissions in Deforestation and Degradation (REDD+) initiative uses payments for ecosystem services as incentives for developing countries to manage and protect their forests. REDD+ initiatives also prioritize social (and environmental) co-benefits aimed at improving the livelihoods of communities that are dependent on forests. Despite the incorporation of co-benefits into REDD+ goals, carbon sequestration remains the primary metric for which countries can receive payments from REDD+, but after more than ten years of REDD+, many site-specific programs have failed to complete the carbon verification process. Here, we examine whether the REDD+ social co-benefits alone are sufficient to have slowed deforestation in the absence of carbon payments on Pemba, Tanzania. Using satellite imagery (Landsat archive), we quantified forest cover change for the period before (2001-2010) and after (2010-2018) the launch in 2010-11 of Pemba island’s REDD+ Readiness project. We then compared rates of forest cover change between shehia (administrative units) that were part of REDD+ Readiness intervention and those that were not, adjusting for confounding variables and the non-random selection of REDD+ shehia with a statistical matching procedure. Despite considerable variation in forest outcomes among shehia, the associated co-benefits with the Pemba REDD+ project had no discernible effect on forest cover change. Likewise, we did not detect an effect of socioecological covariates on forest cover change across all shehia, though island-wide human population growth since 2012 may have played a role. These findings are unsurprising given the failure to secure carbon payments on Pemba and indicate that co-benefits alone are insufficient to reduce deforestation. We conclude that better oversight of all-involved parties is needed to ensure that REDD+ interventions satisfactorily conclude the process of securing a mechanism for carbon payments, if slowing deforestation is to be achieved.


Author(s):  
Jing Fu ◽  
Shaozhong Kang ◽  
Lu Zhang ◽  
Xiaolin Li ◽  
Pierre Gentine ◽  
...  

Abstract Large-scale agricultural activities can exacerbate global climate change. In the past three decades, over 5 Mha of cultivated land have been equipped with Water-Saving Techniques (WST) in Northwest China to cope with water scarcity. However, the effect of WST on local climate and its mechanisms are not yet understood. Here we quantified the local climatic effect by comparing temperature and humidity at controlled and irrigated sites before and after the large-scale implementation of WST. Results show that the substantial reduction in irrigation water use has led to an average increase of 0.3°C in growing-season temperature and reduced relative humidity by 2%. Near-surface air temperature responds nonlinearly to percentage area of WST and a threshold value of 40% is found before any noticeable warming effect over the study area. Moreover, it is found that regions with relatively humid climates respond more significantly to WST. This study reveals the mechanism of WST on near-surface climate and highlights the importance of incorporating this feedback into sustainable water management and land-surface models for assessing the impact of irrigated agriculture on regional climate change.


Author(s):  
Elena Yu Novenko ◽  
Dmitry A. Kupryanov ◽  
Natalia G. Mazei ◽  
Anatoly Prokushkin ◽  
Leanne N. Phelps ◽  
...  

Abstract Recent climate change in Siberia is increasing the probability of dangerous forest fires. The development of effective measures to mitigate and prevent fires is impossible without an understanding of long-term fire dynamics. This paper presents the first multi-site palaeo-fire reconstruction based on macroscopic charcoal data from peat and lake sediment cores located in different landscapes across the permafrost area of Central Siberia. The obtained results show similar temporal patterns of charcoal accumulation rates in the cores under study, and near synchronous changes in fire regimes. The paleo-fire record revealed moderate biomass burning between 3.4 and 2.6 ka BP, followed by the period of lower burning occurring from 2.6 to 1.7 ka BP that coincided with regional climate cooling and moistening. Minimal fire activity was also observed during the Little Ice Age (0.7 – 0.25 ka BP). Fire frequencies increased during the interval from 1.7 to 0.7 ka BP and appears to be partly synchronous with climate warming during the Medieval Climate Anomaly. Regional reconstructions of long-term fire history show that recent fires are unprecedented during the late Holocene, with modern high biomass burning lying outside millennial and centennial variability of the last 3400 years.


Author(s):  
Guillaume Chagnaud ◽  
Geremy Panthou ◽  
Theo Vischel ◽  
Thierry Lebel

Abstract The West African Sahel has been facing for more than 30 years an increase in extreme rainfalls with strong socio-economic impacts. This situation challenges decision-makers to define adaptation strategies in a rapidly changing climate. The present study proposes (i) a quantitative characterization of the trends in extreme rainfalls at the regional scale, (ii) the translation of the trends into metrics that can be used by hydrological risk managers, (iii) elements for understanding the link between the climatology of extreme and mean rainfall. Based on a regional non-stationary statistical model applied to in-situ daily rainfall data over the period 1983-2015, we show that the region-wide increasing trend in extreme rainfalls is highly significant. The change in extreme value distribution reflects an increase in both the mean and variability, producing a 5%/decade increase in extreme rainfall intensity whatever the return period. The statistical framework provides operational elements for revising the design methods of hydraulic structures which most often assume a stationary climate. Finally, the study shows that the increase in extreme rainfall is more attributable to an increase in the intensity of storms (80%) than to their occurrence (20%), reflecting a major disruption from the decadal variability of the rainfall regime documented in the region since 1950.


Author(s):  
Ethan David Coffel ◽  
Corey Lesk ◽  
Jonathan M Winter ◽  
Erich C Osterberg ◽  
Justin Staller Mankin

Abstract U.S. maize and soy production have increased rapidly since the mid-20th century. While global warming has raised temperatures in most regions over this time period, trends in extreme heat have been smaller over U.S. croplands, reducing crop-damaging high temperatures and benefiting maize and soy yields. Here we show that agricultural intensification has created a crop-climate feedback in which increased crop production cools local climate, further raising crop yields. We find that maize and soy production trends have driven cooling effects approximately as large as greenhouse gas induced warming trends in extreme heat over the central U.S. and substantially reduce them over the southern U.S., benefiting crops in all regions. This reduced warming has boosted maize and soy yields by 3.3 (2.7 – 3.9; 13.7 – 20.0%) and 0.6 (0.4 – 0.7; 7.5 – 13.7%) bu/ac/decade, respectively, between 1981 and 2019. Our results suggest that if maize and soy production growth were to stagnate, the ability of the crop-climate feedback to mask warming would fade, exposing U.S. crops to more harmful heat extremes.


Author(s):  
Saverio Perri ◽  
Amilcare Porporato

Abstract Human-induced environmental change increasingly threatens the stability of socio-ecological systems. Careful statistical characterization of environmental concentrations is critical to quantify and predict the consequences of such changes on human and ecosystems conditions. However, while concentrations are naturally defined as the ratio between solute mass and solvent volume, they have rarely been treated as such, typically limiting the analysis to familiar distributions generically used for any other environmental variable. To address this gap, we propose a more general framework that leverages their definition explicitly as ratios of random variables. We show that the resulting models accurately describe the behavior of nitrate plus nitrite in US rivers and salt concentration in estuaries in the Everglades by accounting for heavy tails potentially emerging when the water volume fluctuates around low values. Models that preclude the presence of heavy tails and the related high probability of extreme concentrations could significantly undermine the accuracy of diagnostic frameworks and the effectiveness of mitigation interventions, especially for soil contamination characterized by a water volume (i.e., soil moisture) frequently approaching zero.


Author(s):  
Yuhan Zhu ◽  
Guangwu Chen ◽  
Lixiao Xu ◽  
Ying Zhang ◽  
Yafei Wang ◽  
...  

Abstract The United Nations Sustainable Development Goals have highlighted the challenge posed by increasing air pollution. This study allocates PM2.5 footprint to household consumption expenditure based on multi-regional input-output model and survey data collected from 30 thousand households. The household indirect PM2.5 footprint related to spending on food, hospital, electricity, and education rank as the top four items, plus direct PM2.5 emissions, which in combination contribute more than 55% of total air pollution. Compared with the poor, the responsibilities for air pollution on the wealthy are more sensitive to changes in income, especially for high-end consumption categories, such as luxury goods and services, education and healthcare. Further, the wealthiest 20% of households cause 1.5 times PM2.5 footprint per capita than exposure to PM2.5 emissions. The high-footprint household samples are concentrated in high-exposure areas. It is recommended that mitigation policies address inequality of PM2.5 footprint by targeting the top 20% footprint groups with tags of wealthy, urban resident, well-educated, small family, and apartment living.


Author(s):  
Yu-Chiao Liang ◽  
Lorenzo M. Polvani ◽  
Michael Previdi ◽  
Karen Louise Smith ◽  
Mark R. England ◽  
...  

Abstract Arctic amplification (AA) - the greater warming of the Arctic near-surface temperature relative to its global mean value - is a prominent feature of the climate response to increasing greenhouse gases. Recent work has revealed the importance of ozone-depleting substances (ODS) in contributing to Arctic warming and sea-ice loss. Here, using ensembles of climate model integrations, we expand on that work and directly contrast Arctic warming from ODS to that from carbon dioxide (CO$_2$), over the 1955-2005 period when ODS loading peaked. We find that the Arctic warming and sea-ice loss from ODS are slightly more than half (52-59\%) those from CO$_2$. We further show that the strength of AA for ODS is 1.44 times larger than that for CO$_2$, and that this mainly stems from more positive Planck, albedo, lapse-rate, and cloud feedbacks. Our results suggest that AA would be considerably stronger than presently observed had the Montreal Protocol not been signed.


Sign in / Sign up

Export Citation Format

Share Document