2020 ◽  
Vol 10 (10) ◽  
pp. 2369-2377
Author(s):  
Waqar Mehmood ◽  
Hassan Jari ◽  
Ali Tahir ◽  
Waqar Aslam ◽  
Muhammad Kamran

Development of large-scale healthcare software projects essentially need the efficient management of the created software artifacts during software development process. In such projects different versions of an artifact are created at different times. Traditional software configuration management systems, such as Git, Subversion (SVN), etc., are designed for later phases of software development, which mainly handle the source code document. These systems are unable to perform difference detection and version management tasks on models such as unified modeling language diagrams. UML use case model is used for capturing functional requirements at analyses phase. Different versions of the use case model are created during analyses phase. This paper addresses the detection of differences between two versions of a use case model. In order to perform difference detection, we need to perform three main tasks, i. e., extract the contents of the model, comparison of models and difference representation. Most of the existing approaches in literature of model comparison deal with UML class diagrams. To the best of our knowledge, so far no appropriate approach addresses difference computation of use case model. Existing approaches are not applicable on use case model due to different semantics of use case model. In this research, the concept of model-based software configuration management (SCM) for use case difference detection is proposed. The use case models are created in an open source tool, starUML. The proposed difference algorithm is applied on intermediate tree structure representation of models. As a case study, different versions of a patient appointment healthcare system is used to evaluate different evaluation parameters, such as accuracy, domain independence, high conceptual level and tool independence.


Author(s):  
Pankaj Kamthan

As software systems become ever more interactive, there is a need to model the services they provide to users, and use cases are one abstract way of doing that. As use cases models become pervasive, the question of their communicability to stakeholders arises. In this chapter, we propose a semiotic framework for understanding and systematically addressing the quality of use case models. The quality concerns at each semiotic level are discussed and process- and product-oriented means to address them in a feasible manner are presented. The scope and limitations of the framework, including that of the means, are given. The need for more emphasis on prevention over cure in improving the quality of use case models is emphasized. The ideas explored are illustrated by examples.


Author(s):  
Pankaj Kamthan

The majority of the present software systems, such as those that run on automatic banking machines (ABMs), on mobile devices, and on the Web, are interactive in nature. Therefore, it is critical to precisely understand, identify, and document the services that an interactive software system will provide from the viewpoint of its potential users. A large and important class of models that these services encapsulate is use cases (Jacobson, Christerson, Jonsson, & Övergaard, 1992). In the last few years, use cases have become indispensable as means for behavioral modeling of interactive software systems. They play a crucial role in various software development activities, including estimating development cost (Anda, 2003), eliciting behavioral requirements, and defining test cases. It is well known that addressing quality early is crucial to avoid the propagation of problems to later artifacts (Moody, 2005). With the increasing deployment of use cases as early artifacts in software process environments, the question of how these models should be developed so as to attain high quality arises. In response, this article focuses on the use case modeling process (the act of constructing use case models) and, based on the notion of patterns (Appleton, 1997), proposes a systematic approach towards the development of use case models. The rest of the article is organized as follows. The background and related work necessary for the discussion that follows is outlined. This is followed by the presentation of a pattern-oriented use case modeling process for systematically addressing the semiotic quality of use case models in a feasible manner. Next, challenges and directions for future research are outlined, and finally, concluding remarks are given.


Sign in / Sign up

Export Citation Format

Share Document