TROPHIC RELATIONS OF SOIL INVERTEBRATES

Author(s):  
Daniyar Bayyshovich Apyev ◽  
Rahima Temirbaevna Muratova ◽  
Ashirkan Anarbekovna Inamova
Acarina ◽  
2020 ◽  
Vol 28 (1) ◽  
pp. 55-64
Author(s):  
Omid Joharchi ◽  
Elizabeth Hugo-Coetzee ◽  
Sergey G. Ermilov ◽  
Alexander A. Khaustov

Hypoaspisella spiculifer comb. n. is redescribed on the basis of adult females, collected from soil in South Africa. Hypoaspisella spiculifer fits well with the current concept of the genus Hypoaspisella Bernhard. The chelicerae of this species are similar to those of free-living mites, suggesting that it may be a predator of small soil invertebrates.


2021 ◽  
pp. 111495
Author(s):  
Salla Selonen ◽  
Andraž Dolar ◽  
Anita Jemec Kokalj ◽  
Lyndon N.A. Sackey ◽  
Tina Skalar ◽  
...  

Author(s):  
Laura Barral-Fraga ◽  
María Teresa Barral ◽  
Keeley L. MacNeill ◽  
Diego Martiñá-Prieto ◽  
Soizic Morin ◽  
...  

This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.


2006 ◽  
Vol 25 (9) ◽  
pp. 2490 ◽  
Author(s):  
Stephan Jänsch ◽  
Geoff K. Frampton ◽  
Jörg Römbke ◽  
Paul J. Van den Brink ◽  
Janeck J. Scott-Fordsmand

Sign in / Sign up

Export Citation Format

Share Document