scholarly journals HYBRID GENETIC ALGORITHM TO THE SYNTHESIS OF OPTIMAL HEAT EXCHANGER NETWORKS

2005 ◽  
Vol 4 (1) ◽  
pp. 35
Author(s):  
M. A. S. S. Ravagnani ◽  
A . P. Silva ◽  
A. A. Constantino

In this paper a new systematic is proposed, interfacing Pinch Analysis and Genetic Algorithms (GA). Initially the optimal ∆Tmin is found by using a genetic algorithm. In a second step, with the optimal ∆Tmin, the pinch point is obtained, and the problem is divided in two regions, below and above it. The optimal HEN is obtained for each side of the pinch and the final HEN is achieved. An example from the literature was solved using the proposed systematic. Results show the applicability of the proposed methodology, obtaining a cost value lower than those presented in the literature.

2005 ◽  
Vol 4 (1) ◽  
Author(s):  
M. A. S. S. Ravagnani ◽  
A . P. Silva ◽  
A. A. Constantino

In this paper a new systematic is proposed, interfacing Pinch Analysis and Genetic Algorithms (GA). Initially the optimal ∆Tmin is found by using a genetic algorithm. In a second step, with the optimal ∆Tmin, the pinch point is obtained, and the problem is divided in two regions, below and above it. The optimal HEN is obtained for each side of the pinch and the final HEN is achieved. An example from the literature was solved using the proposed systematic. Results show the applicability of the proposed methodology, obtaining a cost value lower than those presented in the literature.


Author(s):  
Dina Ahmed Kamel ◽  
Mamdouh Ayad Gadalla ◽  
Fatma Hanafy Ashour

Chemical processes are energy intensive industries; the majority of energy consumed in industrial processes is mainly used for heating and cooling requirements. This results in increasing the interest in obtaining the optimum design of the heat exchanger networks to reduce the energy consumption and face the growing energy crises. Most of the published literature over the last fifty years promotes the process integration technology as a main part of the process system engineering science. Graphical Pinch Analysis method normally includes two key steps, firstly obtaining the energy targets which include the minimum energy required for the HEN design, then designing the heat exchanger network (HEN). This paper introduces a new graphical approach for the design of new heat exchanger networks (HENs) based on pinch analysis rules. The HEN is represented on a simple graph, where the cold stream temperatures are plotted on the X-axis while the driving forces for each exchanger are plotted on the Y-axis. This graphical technique can describe the energy analysis problems in term of temperature driving force inside the heat exchanger, which is an important factor in the design process as the differences in these driving forces are involved in calculating the area of heat exchangers, and consequently affecting the cost.


Sign in / Sign up

Export Citation Format

Share Document