Joint Influence Of Surface Roughness And Permeability On Stability And Transition Of Mach = 2 Boundary Layer

2016 ◽  
Vol 11 (2) ◽  
pp. 37-45
Author(s):  
Vladimir Lysenko ◽  
Boris Smorodsky ◽  
Yuri Yermolaev ◽  
Aleksandr Kosinov ◽  
Nikolay Semionov

Joint theoretical and experimental investigation of the influence of surface permeability and roughness on stability and laminar-turbulent transition of the supersonic flat-plate boundary layer at free-stream Mach number M = 2 have been performed. Good quantitative agreement of experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on the linear stability theory has been achieved. At research of the joint effect of the model surface permeability and roughness on the boundary layer stability and transition, it is shown that, as a certain (critical) roughness value is reached, with the rough and porous coating thickness increase, the boundary layer stability diminishes and the laminar-turbulent transition is displaced toward the model leading edge.

2016 ◽  
Vol 798 ◽  
pp. 751-773 ◽  
Author(s):  
V. I. Lysenko ◽  
S. A. Gaponov ◽  
B. V. Smorodsky ◽  
Yu. G. Yermolaev ◽  
A. D. Kosinov ◽  
...  

A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of $M_{\infty }=2$ has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model.


2015 ◽  
Vol 10 (3) ◽  
pp. 41-47
Author(s):  
Vladimir Lysenko ◽  
Sergey Gaponov ◽  
Boris Smorodsky ◽  
Yuri Yermolaev ◽  
Aleksandr Kosinov ◽  
...  

Theoretical and experimental investigation of the influence of porous-coating thickness on the stability of the supersonic flat-plate boundary layer at free-stream Mach number M = 2 have been performed. Good quantitative agreement of experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on the linear stability theory has been achieved. It is shown that the increase of the porous-coating thickness leads to the boundary layer destabilization.


2017 ◽  
Vol 12 (1) ◽  
pp. 50-56
Author(s):  
Vladimir Lysenko ◽  
Boris Smorodsky ◽  
Yuri Yermolaev ◽  
Sergey Gaponov ◽  
Aleksandr Kosinov ◽  
...  

The experimental investigation of the influence of the distributed blowing of heavy gas (sulfur hexafluoride of SF6) into the wall layer of supersonic flat-plate boundary layer (at free-stream Mach number M = 2) on the laminar-turbulent transition have been performed. For the first time experimentally it is shown that in case of such blowing there is a boundary-layer stabilization, and the laminar-turbulent transition is removed from the model leading edge.


2019 ◽  
Vol 50 (5) ◽  
pp. 461-481
Author(s):  
Sergei Vasilyevich Aleksandrov ◽  
Evgeniya Andreevna Aleksandrova ◽  
Volf Ya. Borovoy ◽  
Andrey Vyacheslavovich Gubernatenko ◽  
Vladimir Evguenyevich Mosharov ◽  
...  

2014 ◽  
Vol 9 (2) ◽  
pp. 65-74
Author(s):  
Sergey Gaponov ◽  
Yuri Yermolaev ◽  
Aleksandr Kosinov ◽  
Vladimir Lysenko ◽  
Nikolay Semionov ◽  
...  

In the present study we have performed combined theoretical and experimental investigation of the surface permeability influence on the linear stability of the supersonic flat-plate boundary layer at free-stream Mach number M = 2. Good quantitative agreement was obtained between the data calculated by the linear theory of stability and the data obtained in experiments with artificially generated disturbances performed on models with various porous inserts. It is shown that increase of the permeable surface pore size leads to the destabilization of the first instability modes propagating under arbitrary angles in the boundary layer


Sign in / Sign up

Export Citation Format

Share Document