Character Table for Dirhenium Decacarbonyl of full non-rigid Molecule group (F-NRG)

2019 ◽  
Vol 19 (1) ◽  
pp. 98
Author(s):  
ENOCH SULEIMAN ◽  
BELLO MSHELIA
2012 ◽  
Vol 12 (02) ◽  
pp. 1250150 ◽  
Author(s):  
JINSHAN ZHANG ◽  
ZHENCAI SHEN ◽  
SHULIN WU

The finite groups in which every irreducible character vanishes on at most three conjugacy classes were characterized [J. Group Theory13 (2010) 799–819]. Dually, we investigate the finite groups whose columns contain a small number of zeros in the character table.


1985 ◽  
Vol 37 (3) ◽  
pp. 442-451 ◽  
Author(s):  
David Gluck

Much information about a finite group is encoded in its character table. Indeed even a small portion of the character table may reveal significant information about the group. By a famous theorem of Jordan, knowing the degree of one faithful irreducible character of a finite group gives an upper bound for the index of its largest normal abelian subgroup.Here we consider b(G), the largest irreducible character degree of the group G. A simple application of Frobenius reciprocity shows that b(G) ≧ |G:A| for any abelian subgroup A of G. In light of this fact and Jordan's theorem, one might seek to bound the index of the largest abelian subgroup of G from above by a function of b(G). If is G is nilpotent, a result of Isaacs and Passman (see [7, Theorem 12.26]) shows that G has an abelian subgroup of index at most b(G)4.


2010 ◽  
Vol 17 (03) ◽  
pp. 389-414 ◽  
Author(s):  
Faryad Ali ◽  
Jamshid Moori

The Fischer group [Formula: see text] is the largest 3-transposition sporadic group of order 2510411418381323442585600 = 222.316.52.73.11.13.17.23.29. It is generated by a conjugacy class of 306936 transpositions. Wilson [15] completely determined all the maximal 3-local subgroups of Fi24. In the present paper, we determine the Fischer-Clifford matrices and hence compute the character table of the non-split extension 37· (O7(3):2), which is a maximal 3-local subgroup of the automorphism group Fi24 of index 125168046080 using the technique of Fischer-Clifford matrices. Most of the calculations are carried out using the computer algebra systems GAP and MAGMA.


2007 ◽  
Vol 315 (1) ◽  
pp. 301-325 ◽  
Author(s):  
Herbert Pahlings
Keyword(s):  

10.37236/8186 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Sheila Sundaram

In previous work of this author it was conjectured that the sum of power sums $p_\lambda,$ for partitions $\lambda$ ranging over an interval $[(1^n), \mu]$ in reverse lexicographic order, is Schur-positive. Here we investigate this conjecture and establish its truth in the following special cases: for $\mu\in [(n-4,1^4), (n)]$  or $\mu\in [(1^n), (3,1^{n-3})], $ or $\mu=(3, 2^k, 1^r)$ when $k\geq 1$ and $0\leq r\leq 2.$  Many new Schur positivity questions are presented.


1986 ◽  
Vol 69 (3) ◽  
pp. 538-541 ◽  
Author(s):  
Katalin E Kövér ◽  
Gyula Batta ◽  
Zoltán Mádi

Author(s):  
C. G. Gray ◽  
K. E. Gubbins

In this chapter we introduce distribution functions for molecular momenta and positions. All equilibrium properties of the system can be calculated if both the intermolecular potential energy and the distribution functions are known. Throughout, we shall make use of the ‘rigid molecule’ and classical approximations. In the rigid molecule approximation the system intermolecular potential energy u(rNωN ) depends only on the positions of the centres of mass rN ≡ r1 . . . rN for the N molecules and on their molecular orientations ωN ≡ ω1 . . . ωN; any dependence on vibrational or internal rotational coordinates is neglected. In the classical approximation the translational and rotational motions of the molecules are assumed to be classical. These assumptions should be quite realistic for many fluids composed of simple molecules, e.g. N2 , CO, CO2 , SO2 CF4 , etc. They are discussed in detail in §§ 1.2.1 and 1.2.2; quantum corrections to the partition function are discussed in §§ 1.2.2 and 6.9, and in Appendix 3D. In considering fluids in equilibrium we can distinguish three principal cases: (a) isotropic, homogeneous fluids (e.g. liquid or compressed gas states of N2 , O2 , etc. in the absence of an external field), (b) anisotropic, homogeneous fluids (e.g. a polyatomic fluid in the presence of a uniform electric field, nematic liquid crystals), and (c) inhomogeneous fluids (e.g. the interfacial region). These fluid states have been listed in order of increasing complexity; thus, more independent variables are involved in cases (b) and (c), and consequently the evaluation of the necessary distribution functions is more difficult. For molecular fluids it is convenient to introduce several types of distribution functions, correlation functions, and related quantities: (a) The angular pair correlation function g(r1r2 ω1 ω2). This gives complete information about the pair of molecules, and arises in expressions for the equilibrium properties for a general potential.


Sign in / Sign up

Export Citation Format

Share Document