The Distribution of Zeros of Quadratic Forms over Finite Fields

2015 ◽  
Vol 7 (2) ◽  
pp. 18
Author(s):  
Ali H. Hakami

Let $m$ be a positive integer with $m < p/2$ and $p$ is a prime. Let $\mathbb{F}_q$ be the finite field in $q = p^f$ elements, $Q({\mathbf{x}})$ be a nonsinqular quadratic form over $\mathbb{F}_q$ with $q$ odd, $V$ be the set of points in $\mathbb{F}_q^n$ satisfying the equation $Q({\mathbf{x}}) = 0$ in which the variables are restricted to a box of points of the type\[\mathcal{B}(m) = \left\{ {{\mathbf{x}} \in \mathbb{F}_q^n \left| {x_i  = \sum\limits_{j = 1}^f {x_{ij} \xi _j } ,\;\left| {x_{ij} } \right| < m,\;1 \leqslant i \leqslant n,\;1 \leqslant j \leqslant f} \right.} \right\},\]where $\xi _1 , \ldots ,\xi _f$ is a basis for $\mathbb{F}_q$ over $\mathbb{F}_p$ and $n > 2$ even. Set $\Delta  = \det Q$ such that $\chi \left( {( - 1)^{n/2} \Delta } \right) = 1.$ We shall motivate work of (Cochrane, 1986) to obtain lower bounds on $m,$ size of the box $\mathcal{B},$ so that $\mathcal{B} \cap V$ is nonempty. For this we show that the box $\mathcal{B}(m)$ contains a zero of $Q({\mathbf{x}})$ provided that $m \geqslant p^{1/2}.$ We also show that the box $\mathcal{B}(m)$ contains $n$ linearly independent zeros of $Q({\mathbf{x}})$ provided that $m \geqslant 2^{n/2} p^{1/2} .$

2017 ◽  
Vol 9 (3) ◽  
pp. 8
Author(s):  
Yasanthi Kottegoda

We consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on an irreducible characteristic polynomial of degree $n$ and order $m$. Let $t=(q^{n}-1)/ m$. We use quadratic forms over finite fields to give the exact number of occurrences of zeros of the sequence within its least period when $t$ has q-adic weight 2. Consequently we prove that the cardinality of the set of zeros for sequences from this category is equal to two.


Author(s):  
Himangshu Hazarika ◽  
Dhiren Kumar Basnet ◽  
Stephen D. Cohen

For [Formula: see text] ([Formula: see text]), denote by [Formula: see text] the finite field of order [Formula: see text] and for a positive integer [Formula: see text], let [Formula: see text] be its extension field of degree [Formula: see text]. We establish a sufficient condition for existence of a primitive normal element [Formula: see text] such that [Formula: see text] is a primitive element, where [Formula: see text], with [Formula: see text] satisfying [Formula: see text] in [Formula: see text].


2012 ◽  
Vol 55 (2) ◽  
pp. 418-423 ◽  
Author(s):  
Le Anh Vinh

AbstractGiven a positive integern, a finite fieldofqelements (qodd), and a non-degenerate symmetric bilinear formBon, we determine the largest possible cardinality of pairwiseB-orthogonal subsets, that is, for any two vectorsx,y∈ Ε, one hasB(x,y) = 0.


2020 ◽  
Vol 16 (10) ◽  
pp. 2141-2148
Author(s):  
A. G. Earnest ◽  
Ji Young Kim

For every positive integer [Formula: see text], it is shown that there exists a positive definite diagonal quaternary integral quadratic form that represents all positive integers except for precisely those which lie in [Formula: see text] arithmetic progressions. For [Formula: see text], all forms with this property are determined.


Author(s):  
Somphong Jitman ◽  
Aunyarut Bunyawat ◽  
Supanut Meesawat ◽  
Arithat Thanakulitthirat ◽  
Napat Thumwanit

A family of good punctured polynomials is introduced. The complete characterization and enumeration of such polynomials are given over the binary fieldF2. Over a nonbinary finite fieldFq, the set of good punctured polynomials of degree less than or equal to2are completely determined. Forn≥3, constructive lower bounds of the number of good punctured polynomials of degreenoverFqare given.


2011 ◽  
Vol 07 (06) ◽  
pp. 1603-1614 ◽  
Author(s):  
BYEONG-KWEON OH

For a positive integer d and a non-negative integer a, let Sd,a be the set of all integers of the form dn + a for any non-negative integer n. A (positive definite integral) quadratic form f is said to be Sd,a-universal if it represents all integers in the set Sd, a, and is said to be Sd,a-regular if it represents all integers in the non-empty set Sd,a ∩ Q((f)), where Q(gen(f)) is the set of all integers that are represented by the genus of f. In this paper, we prove that there is a polynomial U(x,y) ∈ ℚ[x,y] (R(x,y) ∈ ℚ[x,y]) such that the discriminant df for any Sd,a-universal (Sd,a-regular) ternary quadratic forms is bounded by U(d,a) (respectively, R(d,a)).


2014 ◽  
Vol 13 (05) ◽  
pp. 1350162 ◽  
Author(s):  
YANGJIANG WEI ◽  
GAOHUA TANG ◽  
JIZHU NAN

For a finite commutative ring R and a positive integer k ≥ 2, we construct an iteration digraph G(R, k) whose vertex set is R and for which there is a directed edge from a ∈ R to b ∈ R if b = ak. In this paper, we investigate the iteration digraphs G(𝔽prCn, k) of 𝔽prCn, the group ring of a cyclic group Cn over a finite field 𝔽pr. We study the cycle structure of G(𝔽prCn, k), and explore the symmetric digraphs. Finally, we obtain necessary and sufficient conditions on 𝔽prCn and k such that G(𝔽prCn, k) is semiregular.


10.37236/4072 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Alexander Pott ◽  
Kai-Uwe Schmidt ◽  
Yue Zhou

Let $\mathbb{F}_q$ be a finite field with $q$ elements and let $X$ be a set of matrices over $\mathbb{F}_q$. The main results of this paper are explicit expressions for the number of pairs $(A,B)$ of matrices in $X$ such that $A$ has rank $r$, $B$ has rank $s$, and $A+B$ has rank $k$ in the cases that (i) $X$ is the set of alternating matrices over $\mathbb{F}_q$ and (ii) $X$ is the set of symmetric matrices over $\mathbb{F}_q$ for odd $q$. Our motivation to study these sets comes from their relationships to quadratic forms. As one application, we obtain the number of quadratic Boolean functions that are simultaneously bent and negabent, which solves a problem due to Parker and Pott.


Author(s):  
Igor E. Shparlinski

We use bounds of exponential sums to derive new lower bounds on the number of distinct distances between all pairs of points(x,y)∈×ℬfor two given sets,ℬ∈Fqn, whereFqis a finite field ofqelements andn≥1is an integer.


2021 ◽  
Vol 91 (333) ◽  
pp. 401-449
Author(s):  
Markus Kirschmer ◽  
Fabien Narbonne ◽  
Christophe Ritzenthaler ◽  
Damien Robert

Let E E be an ordinary elliptic curve over a finite field and g g be a positive integer. Under some technical assumptions, we give an algorithm to span the isomorphism classes of principally polarized abelian varieties in the isogeny class of E g E^g . The varieties are first described as hermitian lattices over (not necessarily maximal) quadratic orders and then geometrically in terms of their algebraic theta null point. We also show how to algebraically compute Siegel modular forms of even weight given as polynomials in the theta constants by a careful choice of an affine lift of the theta null point. We then use these results to give an algebraic computation of Serre’s obstruction for principally polarized abelian threefolds isogenous to E 3 E^3 and of the Igusa modular form in dimension 4 4 . We illustrate our algorithms with examples of curves with many rational points over finite fields.


Sign in / Sign up

Export Citation Format

Share Document