scholarly journals Quadratic form Approach for the Number of Zeros of Homogeneous Linear Recurring Sequences over Finite Fields

2017 ◽  
Vol 9 (3) ◽  
pp. 8
Author(s):  
Yasanthi Kottegoda

We consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on an irreducible characteristic polynomial of degree $n$ and order $m$. Let $t=(q^{n}-1)/ m$. We use quadratic forms over finite fields to give the exact number of occurrences of zeros of the sequence within its least period when $t$ has q-adic weight 2. Consequently we prove that the cardinality of the set of zeros for sequences from this category is equal to two.

2015 ◽  
Vol 7 (2) ◽  
pp. 18
Author(s):  
Ali H. Hakami

Let $m$ be a positive integer with $m < p/2$ and $p$ is a prime. Let $\mathbb{F}_q$ be the finite field in $q = p^f$ elements, $Q({\mathbf{x}})$ be a nonsinqular quadratic form over $\mathbb{F}_q$ with $q$ odd, $V$ be the set of points in $\mathbb{F}_q^n$ satisfying the equation $Q({\mathbf{x}}) = 0$ in which the variables are restricted to a box of points of the type\[\mathcal{B}(m) = \left\{ {{\mathbf{x}} \in \mathbb{F}_q^n \left| {x_i  = \sum\limits_{j = 1}^f {x_{ij} \xi _j } ,\;\left| {x_{ij} } \right| < m,\;1 \leqslant i \leqslant n,\;1 \leqslant j \leqslant f} \right.} \right\},\]where $\xi _1 , \ldots ,\xi _f$ is a basis for $\mathbb{F}_q$ over $\mathbb{F}_p$ and $n > 2$ even. Set $\Delta  = \det Q$ such that $\chi \left( {( - 1)^{n/2} \Delta } \right) = 1.$ We shall motivate work of (Cochrane, 1986) to obtain lower bounds on $m,$ size of the box $\mathcal{B},$ so that $\mathcal{B} \cap V$ is nonempty. For this we show that the box $\mathcal{B}(m)$ contains a zero of $Q({\mathbf{x}})$ provided that $m \geqslant p^{1/2}.$ We also show that the box $\mathcal{B}(m)$ contains $n$ linearly independent zeros of $Q({\mathbf{x}})$ provided that $m \geqslant 2^{n/2} p^{1/2} .$


2017 ◽  
Vol 9 (2) ◽  
pp. 56
Author(s):  
Yasanthi Kottegoda ◽  
Robert Fitzgerald

Consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on the irreducible characteristic polynomial of degree $d$ and order $m$. We give upper and lower bounds, and in some cases the exact values of the cardinality of the set of zeros of the sequences within its least period. We also prove that the cyclotomy bound introduced here is the best upper bound as it is reached in infinitely many cases. In addition, the exact number of occurrences of zeros is determined using the correlation with irreducible cyclic codes when $(q^{d}-1)/ m$ follows the quadratic residue conditions and also when it has the form $q^{2a}-q^{a}+1$ where $a\in \mathbb{N}$.


1980 ◽  
Vol 23 (3) ◽  
pp. 327-332
Author(s):  
P. V. Ceccherini ◽  
J. W. P. Hirschfeld

A variety of applications depend on the number of solutions of polynomial equations over finite fields. Here the usual situation is reversed and we show how to use geometrical methods to estimate the number of solutions of a non-homogeneous symmetric equation in three variables.


10.37236/4072 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Alexander Pott ◽  
Kai-Uwe Schmidt ◽  
Yue Zhou

Let $\mathbb{F}_q$ be a finite field with $q$ elements and let $X$ be a set of matrices over $\mathbb{F}_q$. The main results of this paper are explicit expressions for the number of pairs $(A,B)$ of matrices in $X$ such that $A$ has rank $r$, $B$ has rank $s$, and $A+B$ has rank $k$ in the cases that (i) $X$ is the set of alternating matrices over $\mathbb{F}_q$ and (ii) $X$ is the set of symmetric matrices over $\mathbb{F}_q$ for odd $q$. Our motivation to study these sets comes from their relationships to quadratic forms. As one application, we obtain the number of quadratic Boolean functions that are simultaneously bent and negabent, which solves a problem due to Parker and Pott.


2001 ◽  
Vol 44 (2) ◽  
pp. 242-256
Author(s):  
Laura Mann Schueller

AbstractThe zeta function of a nonsingular pair of quadratic forms defined over a finite field, k, of arbitrary characteristic is calculated. A. Weil made this computation when char k ≠ 2. When the pair has even order, a relationship between the number of zeros of the pair and the number of places of degree one in an appropriate hyperelliptic function field is established.


Author(s):  
Himangshu Hazarika ◽  
Dhiren Kumar Basnet ◽  
Stephen D. Cohen

For [Formula: see text] ([Formula: see text]), denote by [Formula: see text] the finite field of order [Formula: see text] and for a positive integer [Formula: see text], let [Formula: see text] be its extension field of degree [Formula: see text]. We establish a sufficient condition for existence of a primitive normal element [Formula: see text] such that [Formula: see text] is a primitive element, where [Formula: see text], with [Formula: see text] satisfying [Formula: see text] in [Formula: see text].


2020 ◽  
Vol 27 (03) ◽  
pp. 563-574
Author(s):  
Manjit Singh

Let 𝔽q be a finite field of odd characteristic containing q elements, and n be a positive integer. An important problem in finite field theory is to factorize xn − 1 into the product of irreducible factors over a finite field. Beyond the realm of theoretical needs, the availability of coefficients of irreducible factors over finite fields is also very important for applications. In this paper, we introduce second order linear recurring sequences in 𝔽q and reformulate the explicit factorization of [Formula: see text] over 𝔽q in such a way that the coefficients of its irreducible factors can be determined from these sequences when d is an odd divisor of q + 1.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


1989 ◽  
Vol 31 (3) ◽  
pp. 272-284 ◽  
Author(s):  
Wang Yuan

2014 ◽  
Vol 57 (3) ◽  
pp. 579-590 ◽  
Author(s):  
STACY MARIE MUSGRAVE

AbstractThis work defines a new algebraic structure, to be called an alternative Clifford algebra associated to a given quadratic form. I explored its representations, particularly concentrating on connections to the well-understood octonion algebras. I finished by suggesting directions for future research.


Sign in / Sign up

Export Citation Format

Share Document