scholarly journals On the set of distances between two sets over finite fields

Author(s):  
Igor E. Shparlinski

We use bounds of exponential sums to derive new lower bounds on the number of distinct distances between all pairs of points(x,y)∈×ℬfor two given sets,ℬ∈Fqn, whereFqis a finite field ofqelements andn≥1is an integer.

2006 ◽  
Vol 73 (2) ◽  
pp. 285-292 ◽  
Author(s):  
Igor E. Shparlinski

We use exponential sums to obtain new lower bounds on the number of distinct distances defined by all pairs of points (a, b) ∈ A × B for two given sets where is a finite field of q elements and n ≥ 1 is an integer.


2010 ◽  
Vol 82 (2) ◽  
pp. 232-239 ◽  
Author(s):  
JAIME GUTIERREZ ◽  
IGOR E. SHPARLINSKI

AbstractGiven a finite field 𝔽p={0,…,p−1} of p elements, where p is a prime, we consider the distribution of elements in the orbits of a transformation ξ↦ψ(ξ) associated with a rational function ψ∈𝔽p(X). We use bounds of exponential sums to show that if N≥p1/2+ε for some fixed ε then no N distinct consecutive elements of such an orbit are contained in any short interval, improving the trivial lower bound N on the length of such intervals. In the case of linear fractional functions we use a different approach, based on some results of additive combinatorics due to Bourgain, that gives a nontrivial lower bound for essentially any admissible value of N.


Author(s):  
Somphong Jitman ◽  
Aunyarut Bunyawat ◽  
Supanut Meesawat ◽  
Arithat Thanakulitthirat ◽  
Napat Thumwanit

A family of good punctured polynomials is introduced. The complete characterization and enumeration of such polynomials are given over the binary fieldF2. Over a nonbinary finite fieldFq, the set of good punctured polynomials of degree less than or equal to2are completely determined. Forn≥3, constructive lower bounds of the number of good punctured polynomials of degreenoverFqare given.


2015 ◽  
Vol 7 (2) ◽  
pp. 18
Author(s):  
Ali H. Hakami

Let $m$ be a positive integer with $m < p/2$ and $p$ is a prime. Let $\mathbb{F}_q$ be the finite field in $q = p^f$ elements, $Q({\mathbf{x}})$ be a nonsinqular quadratic form over $\mathbb{F}_q$ with $q$ odd, $V$ be the set of points in $\mathbb{F}_q^n$ satisfying the equation $Q({\mathbf{x}}) = 0$ in which the variables are restricted to a box of points of the type\[\mathcal{B}(m) = \left\{ {{\mathbf{x}} \in \mathbb{F}_q^n \left| {x_i  = \sum\limits_{j = 1}^f {x_{ij} \xi _j } ,\;\left| {x_{ij} } \right| < m,\;1 \leqslant i \leqslant n,\;1 \leqslant j \leqslant f} \right.} \right\},\]where $\xi _1 , \ldots ,\xi _f$ is a basis for $\mathbb{F}_q$ over $\mathbb{F}_p$ and $n > 2$ even. Set $\Delta  = \det Q$ such that $\chi \left( {( - 1)^{n/2} \Delta } \right) = 1.$ We shall motivate work of (Cochrane, 1986) to obtain lower bounds on $m,$ size of the box $\mathcal{B},$ so that $\mathcal{B} \cap V$ is nonempty. For this we show that the box $\mathcal{B}(m)$ contains a zero of $Q({\mathbf{x}})$ provided that $m \geqslant p^{1/2}.$ We also show that the box $\mathcal{B}(m)$ contains $n$ linearly independent zeros of $Q({\mathbf{x}})$ provided that $m \geqslant 2^{n/2} p^{1/2} .$


2013 ◽  
Vol 12 (07) ◽  
pp. 1350030 ◽  
Author(s):  
WEI CAO

Let f be a multivariate polynomial over a finite field and its degree matrix be composed of the degree vectors appearing in f. In this paper, we provide an elementary approach to estimating the exponential sums of the polynomials with positive square degree matrices in terms of the elementary divisors of the degree matrices.


Author(s):  
Nicholas M. Katz

This book explores an important aspect of number theory—the theory of exponential sums over finite fields and their Mellin transforms—from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a probabilistic sense), in cases where the input function is suitably algebro-geometric. This question is answered by the book's main theorem, using a mixture of geometric, categorical, and group-theoretic methods. By providing a new framework for studying Mellin transforms over finite fields, this book opens up a new way for researchers to further explore the subject.


2017 ◽  
Vol 9 (2) ◽  
pp. 56
Author(s):  
Yasanthi Kottegoda ◽  
Robert Fitzgerald

Consider homogeneous linear recurring sequences over a finite field $\mathbb{F}_{q}$, based on the irreducible characteristic polynomial of degree $d$ and order $m$. We give upper and lower bounds, and in some cases the exact values of the cardinality of the set of zeros of the sequences within its least period. We also prove that the cyclotomy bound introduced here is the best upper bound as it is reached in infinitely many cases. In addition, the exact number of occurrences of zeros is determined using the correlation with irreducible cyclic codes when $(q^{d}-1)/ m$ follows the quadratic residue conditions and also when it has the form $q^{2a}-q^{a}+1$ where $a\in \mathbb{N}$.


2015 ◽  
Vol 92 (1) ◽  
pp. 32-43
Author(s):  
XIWANG CAO ◽  
GUANGKUI XU

In this paper, we present a decomposition of the elements of a finite field and illustrate the efficiency of this decomposition in evaluating some specific exponential sums over finite fields. The results can be employed in determining the Walsh spectrum of some Boolean functions.


2012 ◽  
Vol 55 (2) ◽  
pp. 418-423 ◽  
Author(s):  
Le Anh Vinh

AbstractGiven a positive integern, a finite fieldofqelements (qodd), and a non-degenerate symmetric bilinear formBon, we determine the largest possible cardinality of pairwiseB-orthogonal subsets, that is, for any two vectorsx,y∈ Ε, one hasB(x,y) = 0.


2003 ◽  
Vol 55 (2) ◽  
pp. 225-246 ◽  
Author(s):  
William D. Banks ◽  
Asma Harcharras ◽  
Igor E. Shparlinski

AbstractWe extend to the setting of polynomials over a finite field certain estimates for short Kloosterman sums originally due to Karatsuba. Our estimates are then used to establish some uniformity of distribution results in the ring [x]/M(x) for collections of polynomials either of the form f−1g−1 or of the form f−1g−1 + afg, where f and g are polynomials coprime to M and of very small degree relative to M, and a is an arbitrary polynomial. We also give estimates for short Kloosterman sums where the summation runs over products of two irreducible polynomials of small degree. It is likely that this result can be used to give an improvement of the Brun-Titchmarsh theorem for polynomials over finite fields.


Sign in / Sign up

Export Citation Format

Share Document