scholarly journals On Theory of logarithmic Poisson Cohomology

2017 ◽  
Vol 9 (4) ◽  
pp. 209
Author(s):  
Joseph Dongho ◽  
Alphonse Mbah ◽  
Shuntah Roland Yotcha

We define the notion of logarithmic Poisson structure along a non zero ideal $\cali$ of an associative, commutative algebra $\cal A$ and prove that each logarithmic Poisson structure induce a skew symmetric 2-form and a Lie-Rinehart structure on the $\cal A$-module $\Omega_K(\log \cali)$ of logarithmic K\"{a}hler differential. This Lie-Rinehart structure define a representation of the underline Lie algebra. Applying the machinery of Chevaley-Eilenberg and Palais, we define the notion of logarithmic Poisson cohomology which is a measure obstructions of Linear representation of the underline Lie algebra for which the grown ring act by multiplication.

2009 ◽  
Vol 08 (02) ◽  
pp. 157-180 ◽  
Author(s):  
A. S. DZHUMADIL'DAEV

Generalizing Lie algebras, we consider anti-commutative algebras with skew-symmetric identities of degree > 3. Given a skew-symmetric polynomial f, we call an anti-commutative algebra f-Lie if it satisfies the identity f = 0. If sn is a standard skew-symmetric polynomial of degree n, then any s4-Lie algebra is f-Lie if deg f ≥ 4. We describe a free anti-commutative super-algebra with one odd generator. We exhibit various constructions of generalized Lie algebras, for example: given any derivations D, F of an associative commutative algebra U, the algebras (U, D ∧ F) and (U, id ∧ D2) are s4-Lie. An algebra (U, id ∧ D3 - 2D ∧ D2) is s'5-Lie, where s'5 is a non-standard skew-symmetric polynomial of degree 5.


2006 ◽  
Vol 84 (10) ◽  
pp. 891-904
Author(s):  
J R Schmidt

The Kahler geometry of minimal coadjoint orbits of classical Lie groups is exploited to construct Darboux coordinates, a symplectic two-form and a Lie–Poisson structure on the dual of the Lie algebra. Canonical transformations cast the generators of the dual into Dyson or Holstein–Primakoff representations.PACS Nos.: 02.20.Sv, 02.30.Ik, 02.40.Tt


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Camelia Pop

A controllable drift-free system on the Lie group G=SO(3)×R3×R3 is considered. The dynamics and geometrical properties of the corresponding reduced Hamilton’s equations on g∗,·,·- are studied, where ·,·- is the minus Lie-Poisson structure on the dual space g∗ of the Lie algebra g=so(3)×R3×R3 of G. The numerical integration of this system is also discussed.


1971 ◽  
Vol 23 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Arthur A. Sagle

A Lie admissible algebra is a non-associative algebra A such that A− is a Lie algebra where A− denotes the anti-commutative algebra with vector space A and with commutation [X, Y] = XY – YX as multiplication; see [1; 2; 5]. Next let L−(X): A− → A−: Y → [X, Y] and H = {L−(X): X ∊ A−}; then, since A− is a Lie algebra, we see that H is contained in the derivation algebra of A− and consequently the direct sum g = A − ⊕ H can be naturally made into a Lie algebra with multiplication [PQ] given by: P = X + L−(U), Q = Y + L−(V) ∊ g, thenand note that for any P, [PP] = 0 so that [PQ] = −[QP] and the Jacobi identity for g follows from the fact that A− is Lie.


1996 ◽  
Vol 07 (03) ◽  
pp. 329-358 ◽  
Author(s):  
VIKTOR L. GINZBURG

We analyze the question of existence and uniqueness of equivariant momentum mappings for Poisson actions of Poisson Lie groups. A necessary and sufficient condition for the equivariant momentum mapping to be unique is given. The existence problem is solved under some extra hypotheses, for example, when the action preserves the Poisson structure. In this case, the problem is closely related to the triviality of the induced group action on the Poisson cohomology. This action is shown to be trivial whenever the group is compact or semisimple. Conceptually, these results rely upon a version of “Poisson calculus” developed here to make one-forms on a Poisson manifold induce a “flow” preserving the Poisson structure. In the general case, obstructions to the existence of an infinitesimal version of an equivariant momentum mapping are found. Using Lie algebra cohomology with coefficients in Fréchet modules, we show that the obstructions vanish, and the infinitesimal mapping exists, when the group is compact semisimple. We also prove the rigidity of compact group actions preserving the Poisson structure on a compact manifold and calculate the Poisson cohomology of the Poisson homogeneous space [Formula: see text].


2017 ◽  
Vol 9 (1) ◽  
pp. 109
Author(s):  
Joseph Dongho

The main purpose of this article is to show that there are non logsymplectic Poisson structures whose Poisson cohomology groups are isomorphic to corresponding logarithmic Poisson cohomology groups.


2009 ◽  
Vol 30 (4) ◽  
pp. 1165-1199
Author(s):  
PHILIPP LOHRMANN

AbstractWe show that a Poisson structure whose linear part vanishes can be holomorphically normalized in a neighbourhood of its singular point $0\in \Bbb C^n$ if, on the one hand, a Diophantine condition on a Lie algebra associated to the quadratic part is satisfied and, on the other hand, the normal form satisfies some formal conditions.


2011 ◽  
Vol 08 (08) ◽  
pp. 1667-1678 ◽  
Author(s):  
MUTTALIP OZAVSAR ◽  
GURSEL YESILOT

Noncommutative derivative operators acting on the quantum 3D space in the sense of Manin are introduced. Furthermore, the quantum 3D space is extended by the series expansion of the logarithm of the grouplike generator in the quantum 3D space. We give its differential calculus and the corresponding Weyl algebra. We also obtain algebra of Cartan–Maurer forms on this extension and the corresponding Lie algebra of vector fields. All noncommutative results are found to reduce to those of the standard commutative algebra when the deformation parameter of the quantum 3D space is set to one.


Sign in / Sign up

Export Citation Format

Share Document