free system
Recently Published Documents


TOTAL DOCUMENTS

3045
(FIVE YEARS 377)

H-INDEX

105
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Jia-Wei Wang ◽  
Xian Zhang ◽  
Michael Karnahl ◽  
Zhi-Mei Luo ◽  
Zizi Li ◽  
...  

Abstract The utilization of a fully noble-metal-free system for photocatalytic CO2 reduction remains a fundamental challenge, demanding the precise design of photosensitizers and catalysts, as well as the exploitation of their intermolecular interactions to facilitate electron delivery. Herein, we have implemented triple modulations on catalyst, photosensitizer and coordinative interaction between them for high-performance light-driven CO2 reduction. In this study, heteroleptic copper and cobalt phthalocyanine complexes were selected as photosensitizers and catalysts, respectively. An over ten-fold improvement in light-driven reduction of CO2 to CO is achieved for the catalysts with appending electron-withdrawing substituents for optimal CO-desorption ability. In addition, pyridine substituents were implanted at the backbone of the phenanthroline moiety of the Cu(I) photosensitizers and the effect of their axial coordinative interaction with the catalyst was tested. The combined results of 1H NMR titration experiment, steady-state/transient photoluminescence, and transient absorption spectroscopy confirm the coordinative interaction and reductive quenching pathway in photocatalysis corroboratively. It has been found that the catalytic performances of the coordinatively interacted systems are unexpectedly reverse to those with the pyridine-free Cu(I) photosensitizers. Moreover, the latter system enables a very high quantum efficiency up to 63.5% at 425 nm with a high selectivity exceeding 99% for CO2-to-CO conversion. As determined by time-resolved X-ray absorption spectroscopy and DFT calculation, the replacement of phenyl by pyridyl groups in the Cu(I) photosensitizer favors a stronger flattening and larger torsional angle change of the overall excited state geometry upon photoexcitation, which explains the decreased lifetime of the triplet excited state. Our work promotes the systematic multi-pathway optimizations on the catalyst, photosensitizer and their interactions for advanced CO2 photoreduction.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Hossein Danafar ◽  
Marziyeh Salehiabar ◽  
Murat Barsbay ◽  
Hossein Rahimi ◽  
Mohammadreza Ghaffarlou ◽  
...  

Aim: To prepare a novel hybrid system for the controlled release and delivery of curcumin (CUR). Methods: A method for the ultrasound-assisted fabrication of protein-modified nanosized graphene oxide-like carbon-based nanoparticles (CBNPs) was developed. After being modified with bovine serum albumin (BSA), CUR was loaded onto the synthesized hybrid (labeled CBNPs@BSA–CUR). The structure and properties of the synthesized nanoparticles were elucidated using transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) methods. Results: CBNPs@BSA–CUR showed pH sensitivity and were calculated as controlled CUR release behavior. The drug-free system exhibited good biocompatibility and was nontoxic. However, CBNPs@BSA–CUR showed acceptable antiproliferative ability against MCF-7 breast cancer cells. Conclusion: CBNPs@BSA–CUR could be considered a highly promising nontoxic nanocarrier for the delivery of CUR with good biosafety.


2022 ◽  
Vol 31 ◽  
pp. 001
Author(s):  
Yimei Xiang

The variable-free semantics of Jacobson (1999, 2000, 2014) derives binding relations by the local application of the z-rule. This rule, however, under- generates binding. This paper makes two contributions: (i) replacing the z-rule with a more flexible rule called i (a la the W-combinator of Szabolcsi 1992), which allows for more binding relations; (ii) enriching Jacobson’s variable-free system and proposing a two-dimensional analysis to account for the interactions between scoping and binding. Issues to be covered include binding into adjuncts, possessor binding, scope ambiguity, inverse linking, weak crossover, and ‘paycheck pronouns’. 


2022 ◽  
Vol 12 ◽  
Author(s):  
Han Suk Choi ◽  
Jung Yeon Han ◽  
Eun Ju Cheong ◽  
Yong Eui Choi

Triterpenoids exist in a free state and/or in conjugated states, such as triterpene glycosides (saponins) or triterpene esters. There is no information on the enzyme participating in the production of triterpene esters from free triterpenes. Lettuce (Lactuca sativa) contains various pentacyclic triterpene acetates (taraxasterol acetates, ψ-taraxasterol acetates, taraxerol acetates, lupeol acetates, α-amyrin acetates, β-amyrin acetates, and germanicol acetate). In this study, we report a novel triterpene acetyltransferase (LsTAT1) in lettuce involved in the biosynthesis of pentacyclic triterpene acetates from free triterpenes. The deduced amino acid sequences of LsTAT1 showed a phylogenetic relationship (43% identity) with those of sterol O-acyltransferase (AtSAT1) of Arabidopsis thaliana and had catalytic amino acid residues (Asn and His) that are typically conserved in membrane-bound O-acyltransferase (MBOAT) family proteins. An analysis of LsTAT1 enzyme activity in a cell-free system revealed that the enzyme exhibited activity for the acetylation of taraxasterol, ψ-taraxasterol, β-amyrin, α-amyrin, lupeol, and taraxerol using acetyl-CoA as an acyl donor but no activity for triterpene acylation using a fatty acyl donor. Lettuce oxidosqualene cyclase (LsOSC1) is a triterpene synthase that produces ψ-taraxasterol, taraxasterol, β-amyrin and α-amyrin. The ectopic expression of both the LsOSC1 and LsTAT1 genes in yeast and tobacco could produce taraxasterol acetate, ψ-taraxasterol acetate, β-amyrin acetate, and α-amyrin acetate. However, expression of the LsTAT1 gene in tobacco was unable to induce the conversion of intrinsic sterols (campesterol, stigmasterol, and β-sitosterol) to sterol acetates. The results demonstrate that the LsTAT1 enzyme is a new class of acetyltransferase belong to the MBOAT family that have a particular role in the acetylation of pentacyclic triterpenes and are thus functionally different from sterol acyltransferase conjugating fatty acyl esters.


Author(s):  
Fallou Laure ◽  
Finazzi Francesco ◽  
Bossu Rémy

Abstract Public earthquake early warning (PEEW) systems are intended to reduce individual risk by warning people ahead of shaking and allowing them to take protective action. Yet very few studies have assessed their actual efficacy from a risk-reduction perspective. Moreover, according to these studies, a majority of people do not undertake safety actions when receiving the warning. The spectrum of PEEW systems has expanded, with a greater diversity of actors (from citizens to private companies), increased independence from national authorities, and greater internationality. Beyond differences in warning and messaging strategies, systems’ characteristics may impact the way the public perceive, trust, understand, and respond to these warnings, which in turn will influence PEEW systems’ efficacy and perceived usefulness, enhancing the need for additional research. We take the example of earthquake network, an independent, voluntary, community-based and free system that offers a PEEW service. Through a quantitative survey (n = 2625), we studied users’ perception and reaction to a warning sent related to an M 8.0 earthquake in Peru (where no national system existed). We observed that even though only a minority of users actually took protective action, the system was appreciated and perceived as useful by the majority because it enabled mental preparation before the shaking. We found evidence for a tolerance for perceived late, missed, and false alerts. However, because it is a voluntary and independent system, the social dimension of the warning was incomplete because only a fringe of the population benefited from the warning. Therefore, many users’ first reaction was to warn their relatives. We discuss the need for partnerships between PEEW operators and national authorities to guarantee universal access to the service and maximize PEEW system efficacy.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Itzik Cooper ◽  
Michal Schnaider-Beeri ◽  
Mati Fridkin ◽  
Yoram Shechter

A family of monomodified bovine serum albumin (BSA) linked to methotrexate (MTX) through a variety of spacers was prepared. All analogues were found to be prodrugs having low MTX-inhibitory potencies toward dihydrofolate reductase in a cell-free system. The optimal conjugates regenerated their antiproliferative efficacies following entrance into cancerous glioma cell lines and were significantly superior to MTX in an insensitive glioma cell line. A BSA–MTX conjugate linked through a simple ethylene chain spacer, containing a single peptide bond located 8.7 Å distal to the protein back bone, and apart from the covalently linked MTX by about 12 Å, was most effective. The inclusion of an additional disulfide bond in the spacer neither enhanced nor reduced the killing potency of this analogue. Disrupting the native structure of the carrier protein in the conjugates significantly reduced their antiproliferative activity. In conclusion, we have engineered BSA–MTX prodrug analogues which undergo intracellular reactivation and facilitate antiproliferative activities following their entrance into glioma cells.


Author(s):  
Yifan Jiang ◽  
Yichang Liu ◽  
Min Wang ◽  
Zhi Li ◽  
Lichao Su ◽  
...  

Author(s):  
Yu-Jing Yang ◽  
Yin Liu ◽  
Dan-Dan Liu ◽  
Wen-Zhu Guo ◽  
Li-Xian Wang ◽  
...  

2021 ◽  
Author(s):  
Shah Mahdi Hasan ◽  
Kaushik Mahata ◽  
Md Mashud Hyder

To support the explosive growth of the Internet of Things (IoT), Uplink (UL) grant-free Non-Orthogonal Multiple Access (NOMA) emerges as a promising technology. It has the potential of offering scalable and low-cost solutions for the resource-constrained Massive Machine Type Communication (mMTC) systems. In principle, the grant-free NOMA enables small signaling overhead and low access latency time by circumventing complicated grant-access based procedures which is commonly found in the legacy wireless networks. In a UL grant-free system, a complete Multi-User Detection (MUD) algorithm not only performs the Active User Detection (AUD) but also the Channel Estimation (CE) and the Data Detection (DD). By exploiting the naturally occurring sparse user activity in the mMTC systems, the MUD problem can be solved using a wide range of Compressive Sensing based algorithms (CS-MUD). However, some alternative routes have been explored in the literature as well. The utility of these algorithms, in general, revolve around some assumptions about the channel or the availability of perfect channel information at the Base Station (BS). How these assumptions are met in a practical circumstance is, however, an important concern. In this work we devise an end-to-end MUD using Deep Neural Network (DNN) where we relax these assumptions. We approximate an ensemble of trained DNN based MUD using Knowledge Distillation (KD) to enable fast AUD at the Base Station (BS). Furthermore, using the inter-resource correlation, we estimate the channels of the active users which is an ill-posed problem otherwise. We carry out elaborate numerical investigation to validate the efficacy of the proposed approach for the UL grant-free NOMA systems.


Sign in / Sign up

Export Citation Format

Share Document