scholarly journals Approximation numbers of matrix transformations and inclusion maps

2011 ◽  
Vol 42 (2) ◽  
pp. 193-203
Author(s):  
M. Gupta ◽  
L. R. Acharya

In this paper we establish relationships of the approximation numbers of matrix transformations acting between the vector-valued sequence spaces spaces of the type $\lambda(X)$ defined corresponding to a scalar-valued sequence space $\lambda$ and a Banach space $(X,\|.\|)$ as $$\lambda(X)=\{\overline x=\{x_i\}: x_i\in X, \forall~i\in \mathbb{N},~\{\|x_i\|_X\}\in \lambda\};$$ with those of their component operators. This study leads to a characterization of a diagonal operator to be approximable. Further, we compute the approximation numbers of inclusion maps acting between $\ell^p(X)$ spaces for $1\leq p\leq \infty$.

Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 268 ◽  
Author(s):  
Kuddusi Kayaduman ◽  
Fevzi Yaşar

In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l∞ was introduced by Wang, where 1 ≤ p < ∞. Tuğ and Başar studied the matrix domain of Nörlund mean on the sequence spaces f0 and f in 2016. Additionally, Tuğ defined and investigated a new sequence space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017. In this article, we defined new space and and examined the domain of the Nörlund mean on the bs and cs, which are bounded and convergent series, respectively. We also examined their inclusion relations. We defined the norms over them and investigated whether these new spaces provide conditions of Banach space. Finally, we determined their α­, β­, γ­duals, and characterized their matrix transformations on this space and into this space.


2001 ◽  
Vol 26 (11) ◽  
pp. 671-678
Author(s):  
Suthep Suantai

We give the matrix characterizations from Nakano vector-valued sequence spaceℓ(X,p)andFr(X,p)into the sequence spacesEr,ℓ∞,ℓ¯∞(q),bs, andcs, wherep=(pk)andq=(qk)are bounded sequences of positive real numbers such thatPk>1for allk∈ℕandr≥0.


1995 ◽  
Vol 18 (2) ◽  
pp. 341-356 ◽  
Author(s):  
Manjul Gupta ◽  
Kalika Kaushal

In this note, we carry out investigations related to the mixed impact of ordering and topological structure of a locally convex solid Riesz space(X,τ)and a scalar valued sequence spaceλ, on the vector valued sequence spaceλ(X)which is formed and topologized with the help ofλandX, and vice versa. Besides,we also characterizeo-matrix transformations fromc(X),ℓ∞(X)to themselves,cs(X)toc(X)and derive necessary conditions for a matrix of linear operators to transformℓ1(X)into a simple ordered vector valued sequence spaceΛ(X).


Author(s):  
Bernd Carl

SynopsisIn this paper we determine the asymptotic behaviour of entropy numbers of embedding maps between Besov sequence spaces and Besov function spaces. The results extend those of M. Š. Birman, M. Z. Solomjak and H. Triebel originally formulated in the language of ε-entropy. It turns out that the characterization of embedding maps between Besov spaces by entropy numbers can be reduced to the characterization of certain diagonal operators by their entropy numbers.Finally, the entropy numbers are applied to the study of eigenvalues of operators acting on a Banach space which admit a factorization through embedding maps between Besov spaces.The statements of this paper are obtained by results recently proved elsewhere by the author.


1986 ◽  
Vol 100 (1) ◽  
pp. 151-159 ◽  
Author(s):  
M. A. Sofi

For a given locally convex space, it is always of interest to find conditions for its nuclearity. Well known results of this kind – by now already familiar – involve the use of tensor products, diametral dimension, bilinear forms, generalized sequence spaces and a host of other devices for the characterization of nuclear spaces (see [9]). However, it turns out, these nuclearity criteria are amenable to a particularly simple formulation in the setting of certain sequence spaces; an elegant example is provided by the so-called Grothendieck–Pietsch (GP, for short) criterion for nuclearity of a sequence space (in its normal topology) in terms of the summability of certain numerical sequences.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Havva Nergiz ◽  
Feyzi Başar

The sequence space was introduced by Maddox (1967). Quite recently, the domain of the generalized difference matrix in the sequence space has been investigated by Kirişçi and Başar (2010). In the present paper, the sequence space of nonabsolute type has been studied which is the domain of the generalized difference matrix in the sequence space . Furthermore, the alpha-, beta-, and gamma-duals of the space have been determined, and the Schauder basis has been given. The classes of matrix transformations from the space to the spaces ,candc0have been characterized. Additionally, the characterizations of some other matrix transformations from the space to the Euler, Riesz, difference, and so forth sequence spaces have been obtained by means of a given lemma. The last section of the paper has been devoted to conclusion.


1992 ◽  
Vol 34 (3) ◽  
pp. 271-276
Author(s):  
J. Zhu

The question “Does a Banach space with a symmetric basis and weak cotype 2 (or Orlicz) property have cotype 2?” is being seriously considered but is still open though the similar question for the r.i. function space on [0, 1] has an affirmative answer. (If X is a r.i. function space on [0, 1] and has weak cotype 2 (or Orlicz) property then it must have cotype 2.) In this note we prove that for Lorentz sequence spaces d(a, 1) they both hold.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Murat Kirişci

The -space of all sequences is given as such that converges and is a null sequence which is called the Hahn sequence space and is denoted by . Hahn (1922) defined the space and gave some general properties. G. Goes and S. Goes (1970) studied the functional analytic properties of this space. The study of Hahn sequence space was initiated by Chandrasekhara Rao (1990) with certain specific purpose in the Banach space theory. In this paper, the matrix domain of the Hahn sequence space determined by the Cesáro mean first order, denoted by , is obtained, and some inclusion relations and some topological properties of this space are investigated. Also dual spaces of this space are computed and, matrix transformations are characterized.


Author(s):  
Fernando Bombal ◽  
Pilar Cembranos

Let K be a compact Hausdorff space and E, F Banach spaces. We denote by C(K, E) the Banach space of all continuous. E-valued functions defined on K, with the supremum norm. It is well known ([6], [7]) that every operator (= bounded linear operator) T from C(K, E) to F has a finitely additive representing measure m of bounded semi-variation, defined on the Borel σ-field Σ of K and with values in L(E, F″) (the space of all operators from E into the second dual of F), in such a way thatwhere the integral is considered in Dinculeanu's sense.


Sign in / Sign up

Export Citation Format

Share Document