Characterization of some classes of operators on spaces of vector-valued continuous functions

Author(s):  
Fernando Bombal ◽  
Pilar Cembranos

Let K be a compact Hausdorff space and E, F Banach spaces. We denote by C(K, E) the Banach space of all continuous. E-valued functions defined on K, with the supremum norm. It is well known ([6], [7]) that every operator (= bounded linear operator) T from C(K, E) to F has a finitely additive representing measure m of bounded semi-variation, defined on the Borel σ-field Σ of K and with values in L(E, F″) (the space of all operators from E into the second dual of F), in such a way thatwhere the integral is considered in Dinculeanu's sense.

1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


1985 ◽  
Vol 98 (2) ◽  
pp. 323-326 ◽  
Author(s):  
Paulette Saab ◽  
Michel Talagrand

Let X be a compact Hausdorff space, let E be a (real or complex) Banach space, and let C(X, E) stand for the Banach space of all continuous E-valued functions defined on X under the supremum norm. If A is an arbitrary linear subspace of C(X, E), then it is shown that each bounded linear functional l on A can be represented by a boundary E*-valued vector measure μ on X that has the same norm as l. This result constitutes an extension to vector-valued functions of the so-called analytic version of Choquet's integral representation theorem.


1983 ◽  
Vol 28 (2) ◽  
pp. 175-186 ◽  
Author(s):  
Pilar Cembranos

Let K be a compact Hausdorff space and let E be a Banach space. We denote by C(K, E) the Banach space of all E-valued continuous functions defined on K, endowed with the supremum norm.Recently, Talagrand [Israel J. Math.44 (1983), 317–321] constructed a Banach space E having the Dunford-Pettis property such that C([0, 1], E) fails to have the Dunford-Pettis property. So he answered negatively a question which was posed some years ago.We prove in this paper that for a large class of compacts K (the scattered compacts), C(K, E) has either the Dunford-Pettis property, or the reciprocal Dunford-Pettis property, or the Dieudonné property, or property V if and only if E has the same property.Also some properties of the operators defined on C(K, E) are studied.


2010 ◽  
Vol 52 (3) ◽  
pp. 435-445 ◽  
Author(s):  
IOANA GHENCIU ◽  
PAUL LEWIS

AbstractLet K be a compact Hausdorff space, X a Banach space and C(K, X) the Banach space of all continuous functions f: K → X endowed with the supremum norm. In this paper we study weakly precompact operators defined on C(K, X).


1989 ◽  
Vol 31 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Marek Nawrocki

Let X be a completely regular Hausdorff space. A Nachbin family of weights is a set V of upper-semicontinuous positive functions on X such that if u, υ ∈ V then there exists w ∈ V and t > 0 so that u, υ ≤ tw. For any Hausdorff topological vector space E, the weighted space CV0(X, E) is the space of all E-valued continuous functions f on X such that υf vanishes at infinity for all υ ∈ V. CV0(X, E) is equipped with the weighted topologywv = wv(X, E) which has as a base of neighbourhoods of zero the family of all sets of the formwhere υ ∈ Vand W is a neighbourhood of zero in E. If E is the scalar field, then the space CV0(X, E) is denoted by CV0(X). The reader is referred to [4, 6, 8] for information on weighted spaces.


1991 ◽  
Vol 33 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Paulette Saab ◽  
Brenda Smith

Let Ω: be a compact Hausdorff space, let E be a Banach space, and let C(Ω, E) stand for the Banach space of continuous E-valued functions on Ω under supnorm. It is well known [3, p. 182] that if F is a Banach space then any bounded linear operator T:C(Ω, E)→ F has a finitely additive vector measure G defined on the σ-field of Borel subsets of Ω with values in the space ℒ(E, F**) of bounded linear operators from E to the second dual F** of F. The measure G is said to represent T. The purpose of this note is to study the interplay between certain properties of the operator T and properties of the representing measure G. Precisely, one of our goals is to study when one can characterize nuclear operators in terms of their representing measures. This is of course motivated by a well-known theorem of L. Schwartz [5] (see also [3, p. 173]) concerning nuclear operators on spaces C(Ω) of continuous scalar-valued functions. The study of nuclear operators on spaces C(Ω, E) of continuous vector-valued functions was initiated in [1], where the author extended Schwartz's result in case E* has the Radon-Nikodym property. In this paper, we will show that the condition on E* to have the Radon-Nikodym property is necessary to have a Schwartz's type theorem. This leads to a new characterization of dual spaces E* with the Radon-Nikodym property. In [2], it was shown that if T:C(Ω, E)→ F is nuclear than its representing measure G takes its values in the space (E, F) of nuclear operators from E to F. One of the results of this paper is that if T:C(Ω, E)→ F is nuclear then its representing measure G is countably additive and of bounded variation as a vector measure taking its values in (E, F) equipped with the nuclear norm. Finally, we show by easy examples that the above mentioned conditions on the representing measure G do not characterize nuclear operators on C(Ω, E) spaces, and we also look at cases where nuclear operators are indeed characterized by the above two conditions. For all undefined notions and terminologies, we refer the reader to [3].


1989 ◽  
Vol 31 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Hans Jarchow

Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous functions on K. It is well-known that every 1-summing operator S:C(K)→l2 is also nuclear, and therefore factors S = S1S2, with S1:l2→l2 a Hilbert–Schmidt operator and S1:C(K)→l2 a bounded operator. It is easily seen that this latter property is preserved when C(K) is replaced by any quotient, and that a Banach space X enjoys this property if and only if its second dual, X**, does. This led A. Pełczyński [15] to ask if the second dual of a Banach space X must be isomorphic to a quotient of a C(K)-space if X has the property that every 1-summing operator X-→l2 factors through a Hilbert-Schmidt operator. In this paper, we shall first of all reformulate the question in an appropriate manner and then show that counter-examples are available among super-reflexive Tsirelson-like spaces as well as among quasi-reflexive Banach spaces.


1997 ◽  
Vol 55 (1) ◽  
pp. 147-160 ◽  
Author(s):  
Reinhard Wolf

Let E be a Banach space. The averaging interval AI(E) is defined as the set of positive real numbers α, with the following property: For each n ∈ ℕ and for all (not necessarily distinct) x1, x2, … xn ∈ E with ∥x1∥ = ∥x2∥ = … = ∥xn∥ = 1, there is an x ∈ E, ∥x∥ = 1, such thatIt follows immediately, that AI(E) is a (perhaps empty) interval included in the closed interval [1,2]. For example in this paper it is shown that AI(E) = {α} for some 1 < α < 2, if E has finite dimension. Furthermore a complete discussion of AI(C(X)) is given, where C(X) denotes the Banach space of real valued continuous functions on a compact Hausdorff space X. Also a Banach space E is found, such that AI(E) = [1,2].


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4979-4988 ◽  
Author(s):  
Eshkaftaki Bayati ◽  
Noha Eftekhari

In this work we investigate a natural preorder on c0, the Banach space of all real sequences tend to zero with the supremum norm, which is said to be ?convex majorization?. Some interesting properties of all bounded linear operators T : c0 ? c0, preserving the convex majorization, are given and we characterize such operators.


1977 ◽  
Vol 18 (1) ◽  
pp. 69-72
Author(s):  
J. A. Erdos

In spectral theory on Banach spaces, certain more incisive results hold when the underlying space is weakly complete (that is, weakly sequentially complete). The standard proofs rely on the following deep theorem: any bounded linear map from the algebra of all complex continuous functions on a compact Hausdorff space to a weakly complete Banach space is weakly compact. The proof of this result depends in turn on a considerable amount of measure-theoretic machinery (see [4, Section VI.7]). We present here some alternative methods which avoid these technicalities. The results are then used to give an example of a set of projections, each having unit norm, which generate an unbounded Boolean algebra.


Sign in / Sign up

Export Citation Format

Share Document