scholarly journals New eigenvalue estimates involving Bessel functions

2021 ◽  
Vol 65 ◽  
pp. 681-726
Author(s):  
Fida El Chami ◽  
Nicolas Ginoux ◽  
Georges Habib
Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 198
Author(s):  
Yuriy Povstenko

The Wright function is a generalization of the exponential function and the Bessel functions. Integral relations between the Mittag–Leffler functions and the Wright function are presented. The applications of the Wright function and the Mainardi function to description of diffusion, heat conduction, thermal and diffusive stresses, and nonlocal elasticity in the framework of fractional calculus are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
B. A. Frasin ◽  
Ibtisam Aldawish

The main object of this paper is to find necessary and sufficient conditions for generalized Bessel functions of first kind zup(z) to be in the classes SPp(α,β) and UCSP(α,β) of uniformly spiral-like functions and also give necessary and sufficient conditions for z(2-up(z)) to be in the above classes. Furthermore, we give necessary and sufficient conditions for I(κ,c)f to be in UCSPT(α,β) provided that the function f is in the class Rτ(A,B). Finally, we give conditions for the integral operator G(κ,c,z)=∫0z(2-up(t))dt to be in the class UCSPT(α,β). Several corollaries and consequences of the main results are also considered.


Author(s):  
Mohamed Amine Boubatra ◽  
Selma Negzaoui ◽  
Mohamed Sifi

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Didier Pilod ◽  
Jean-Claude Saut ◽  
Sigmund Selberg ◽  
Achenef Tesfahun

AbstractWe prove several dispersive estimates for the linear part of the Full Dispersion Kadomtsev–Petviashvili introduced by David Lannes to overcome some shortcomings of the classical Kadomtsev–Petviashvili equations. The proof of these estimates combines the stationary phase method with sharp asymptotics on asymmetric Bessel functions, which may be of independent interest. As a consequence, we prove that the initial value problem associated to the Full Dispersion Kadomtsev–Petviashvili is locally well-posed in $$H^s(\mathbb R^2)$$ H s ( R 2 ) , for $$s>\frac{7}{4}$$ s > 7 4 , in the capillary-gravity setting.


Sign in / Sign up

Export Citation Format

Share Document