Fracture toughness of ABS additively manufactured by FDM process

Author(s):  
O. Aourik ◽  
M. Othmani ◽  
B. Saadouki, ◽  
Kh. Abouzaid ◽  
A. Chouaf

Purpose: The purpose on this article is to study the failure of FDM printed ABS by exhibiting an exhaustive crack growth analysis mainly based on raster angle parameter. Design/methodology/approach: Two approaches have been developed in this study; On one hand, mechanical experiments were carried out to determine the critical stress intensity factor KIC. On the other hand, numerical analysis was used to predict the paths within the part as well as the crack propagation. Findings: This work has clearly shown the effect of raster angle on the damage mechanism of the ABS printed by FDM. Indeed, for the combination 1 (0°/90°), the structure presents an important stiffness and a high degree of stress distribution symmetry with respect to the notch. Moreover, the crack propagation is regular and straight, and the damage surfaces are on the same plane. However, for the combination 2 (-45°/45°), the structure is less resistant with an asymmetrical stress distribution according to two different planes. Research limitations/implications: In order to present an exhaustive study, we focused on the effect of two raster angles (including 0°/90°, -45°/45°) on the ABS crack propagation, additively manufactured. This study is still in progress for other raster angles, and will be developed from a design of experiments (DoE) design that incorporates all relevant factors. To highlight more the cracking mechanisms, microscopic observations will be developed in more depth. Practical implications: Our analysis can be used as a decision aid in the design of FDM parts. Indeed, we can choose the raster angle that would ensure the desired crack propagation resistance for a functional part. Originality/value: In this article, we have analyzed the mechanism of damage and crack propagation. This topic represents a new orientation for many research papers. For our study, we accompanied our experimental approach with an original numerical approach. In this numerical approach, we were able to mesh distinctly raster by raster for all layers.

2021 ◽  
Author(s):  
Ruxin Zhang ◽  
Qinglin Shan ◽  
Wan Cheng

Abstract In this paper, a 3D near-wellbore fracture propagation model is established, integrating five parts: formation stress balance, drilling, casing and cementing, perforating, and fracturing, in order to investigate fracture initiation characteristics, near-wellbore fracture non-planar propagation behavior, and torturous hydraulic fracture morphology for cased and perforated horizontal wellbores in tight sandstone formation. The method is based on the combination of finite element method and post-failure damage mechanism. Finite element method is used to determine the coupling behavior between the pore fluid seepage and rock stress distribution. Post-failure damage mechanism is adopted to test the evolution of hydraulic fractures through simulating rock damage process. Moreover, a user subroutine is introduced to establish the relation between rock strength, permeability, and damage, in order to solve the model. This model could simulate the interaction between fractures during their propagation process because of the stress shadow. The simulation results indicate that each operation could cause redistribution and reorientation of near-wellbore stress. Therefore, it is important to know the real near-wellbore stress distribution that affects near-wellbore fracture initiation and propagation. Initially, hydraulic fractures initiate independently from each perforation and propagate along the direction of maximum horizontal stress. However, hydraulic fractures divert from original direction gradually to interconnect and overlap with each other, because of stress shadow, resulting in non-planar propagation behavior. Individual fractures coalesce into a spiral-shaped fracture morphology. In addition, a longitudinal fracture could be observed because of wellbore effect, which is a result of weak cementing strength or near-wellbore weak plane. Finally, the complex and torturous fracture morphologies are created near the wellbore, incorporating Multi-spiral shaped fracture and horizontal-vertical crossing shaped fracture. However, the propagation behavior of fracture far away from wellbore is controlled by in-situ stress, forming a planar fracture. The highlights of this 3D near-wellbore fracture propagation model are following: 1) it considers near-wellbore stress change caused by each construction to ensure the accuracy of near-wellbore stress distribution; 2) it achieves 3D simulation of fracture initiation and near-wellbore propagation from perforations; 3) the interaction between fractures is involved, resulting in complex and torturous morphology. This model provides the theoretical basis for fracture initiation and propagation, which also could be applied into heterogenous formations considering the effect of discontinuities.


Sign in / Sign up

Export Citation Format

Share Document