scholarly journals Discovery of Frequent Itemsets: Frequent Item Tree-Based Approach

2007 ◽  
Vol 1 (1) ◽  
pp. 42-55
Author(s):  
A. V. Senthil Kumar ◽  
R. S.D. Wahidabanu
2019 ◽  
Vol 8 (2) ◽  
pp. 3885-3889

Closed item sets are frequent itemsets that uniquely determines the exact frequency of frequent item sets. Closed Item sets reduces the massive output to a smaller magnitude without redundancy. In this paper, we present PSS-MCI, an efficient candidate generate based approach for mining all closed itemsets. It enumerates closed item sets using hash tree, candidate generation, super-set and sub-set checking. It uses partitioned based strategy to avoid unnecessary computation for the itemsets which are not useful. Using an efficient algorithm, it determines all closed item sets from a single scan over the database. However, several unnecessary item sets are being hashed in the buckets. To overcome the limitations, heuristics are enclosed with algorithm PSS-MCI. Empirical evaluation and results show that the PSS-MCI outperforms all candidate generate and other approaches. Further, PSS-MCI explores all closed item sets.


2017 ◽  
Vol 8 (1) ◽  
pp. 31-43
Author(s):  
Zuber Shaikh ◽  
Antara Mohadikar ◽  
Rachana Nayak ◽  
Rohith Padamadan

Frequent itemsets refer to a set of data values (e.g., product items) whose number of co-occurrences exceeds a given threshold. The challenge is that the design of proofs and verification objects has to be customized for different data mining algorithms. Intended method will implement a basic idea of completeness verification and authentication approach in which the client will uses a set of frequent item sets as the evidence, and checks whether the server has missed any frequent item set as evidence in its returned result. It will help client detect untrusted server and system will become much more efficiency by reducing time. In authentication process CaRP is both a captcha and a graphical password scheme. CaRP addresses a number of security problems altogether, such as online guessing attacks, relay attacks, and, if combined with dual-view technologies, shoulder-surfing attacks.


2013 ◽  
Vol 33 (11) ◽  
pp. 3045-3048
Author(s):  
Hongmei WANG ◽  
Ming HU

2021 ◽  
Vol 16 (2) ◽  
pp. 1-30
Author(s):  
Guangtao Wang ◽  
Gao Cong ◽  
Ying Zhang ◽  
Zhen Hai ◽  
Jieping Ye

The streams where multiple transactions are associated with the same key are prevalent in practice, e.g., a customer has multiple shopping records arriving at different time. Itemset frequency estimation on such streams is very challenging since sampling based methods, such as the popularly used reservoir sampling, cannot be used. In this article, we propose a novel k -Minimum Value (KMV) synopsis based method to estimate the frequency of itemsets over multi-transaction streams. First, we extract the KMV synopses for each item from the stream. Then, we propose a novel estimator to estimate the frequency of an itemset over the KMV synopses. Comparing to the existing estimator, our method is not only more accurate and efficient to calculate but also follows the downward-closure property. These properties enable the incorporation of our new estimator with existing frequent itemset mining (FIM) algorithm (e.g., FP-Growth) to mine frequent itemsets over multi-transaction streams. To demonstrate this, we implement a KMV synopsis based FIM algorithm by integrating our estimator into existing FIM algorithms, and we prove it is capable of guaranteeing the accuracy of FIM with a bounded size of KMV synopsis. Experimental results on massive streams show our estimator can significantly improve on the accuracy for both estimating itemset frequency and FIM compared to the existing estimators.


Sign in / Sign up

Export Citation Format

Share Document