scholarly journals Advances in Insecticide Tools and Tactics for Protecting Conifers from Bark Beetle Attack in the Western United States

Author(s):  
Christopher J. ◽  
Donald M. ◽  
A. Steven
2012 ◽  
Vol 12 (11) ◽  
pp. 29763-29800 ◽  
Author(s):  
A. R. Berg ◽  
C. L. Heald ◽  
K. E. Huff Hartz ◽  
A. G. Hallar ◽  
A. J. H. Meddens ◽  
...  

Abstract. Over the last decade, extensive beetle outbreaks in Western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the Western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle mortality data together with beetle-induced monoterpene concentration data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in Western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (following a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in SOA concentrations) when following a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in Western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the Western United States.


2011 ◽  
Vol 104 (4) ◽  
pp. 705-717 ◽  
Author(s):  
Jana C. Lee ◽  
José F. Negrón ◽  
Sally J. McElwey ◽  
Livy Williams ◽  
Jeffrey J. Witcosky ◽  
...  

2013 ◽  
Vol 13 (6) ◽  
pp. 3149-3161 ◽  
Author(s):  
A. R. Berg ◽  
C. L. Heald ◽  
K. E. Huff Hartz ◽  
A. G. Hallar ◽  
A. J. H. Meddens ◽  
...  

Abstract. Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect) and increased emissions in trees under attack (attack effect). We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA) formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response). Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia) and 2008 (US). Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations) in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness areas of the western United States.


2016 ◽  
Vol 11 (7) ◽  
pp. 074010 ◽  
Author(s):  
Kimberly M Slinski ◽  
Terri S Hogue ◽  
Aaron T Porter ◽  
John E McCray

2006 ◽  
Vol 99 (5) ◽  
pp. 1691-1698 ◽  
Author(s):  
Christopher J. Fettig ◽  
Kurt K. Allen ◽  
Robert R. Borys ◽  
John Christopherson ◽  
Christopher P. Dabney ◽  
...  

2015 ◽  
Vol 21 (8) ◽  
pp. 3087-3101 ◽  
Author(s):  
Bardan Ghimire ◽  
Christopher A. Williams ◽  
G. James Collatz ◽  
Melanie Vanderhoof ◽  
John Rogan ◽  
...  

2020 ◽  
Vol 475 ◽  
pp. 118402
Author(s):  
Jeffrey A. Hicke ◽  
Bingbing Xu ◽  
Arjan J.H. Meddens ◽  
Joel M. Egan

2015 ◽  
Vol 112 (14) ◽  
pp. 4375-4380 ◽  
Author(s):  
Sarah J. Hart ◽  
Tania Schoennagel ◽  
Thomas T. Veblen ◽  
Teresa B. Chapman

In the western United States, mountain pine beetles (MPBs) have killed pine trees across 71,000 km2 of forest since the mid-1990s, leading to widespread concern that abundant dead fuels may increase area burned and exacerbate fire behavior. Although stand-level fire behavior models suggest that bark beetle-induced tree mortality increases flammability of stands by changing canopy and forest floor fuels, the actual effect of an MPB outbreak on subsequent wildfire activity remains widely debated. To address this knowledge gap, we superimposed areas burned on areas infested by MPBs for the three peak years of wildfire activity since 2002 across the western United States. Here, we show that the observed effect of MPB infestation on the area burned in years of extreme fire appears negligible at broad spatial extents. Contrary to the expectation of increased wildfire activity in recently infested red-stage stands, we found no difference between observed area and expected area burned in red-stage or subsequent gray-stage stands during three peak years of wildfire activity, which account for 46% of area burned during the 2002–2013 period. Although MPB infestation and fire activity both independently increased in conjunction with recent warming, our results demonstrate that the annual area burned in the western United States has not increased in direct response to bark beetle activity. Therefore, policy discussions should focus on societal adaptation to the effects of recent increases in wildfire activity related to increased drought severity.


Sign in / Sign up

Export Citation Format

Share Document