organic aerosol
Recently Published Documents


TOTAL DOCUMENTS

3466
(FIVE YEARS 866)

H-INDEX

156
(FIVE YEARS 15)

2022 ◽  
Author(s):  
Zechen Yu ◽  
Myoseon Jang ◽  
Soontae Kim ◽  
Kyuwon Son ◽  
Sanghee Han ◽  
...  

Abstract. The prediction of Secondary Organic Aerosol (SOA) in regional scales is traditionally performed by using gas-particle partitioning models. In the presence of inorganic salted wet aerosols, aqueous reactions of semivolatile organic compounds can also significantly contribute to SOA formation. The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) model utilizes explicit gas chemistry to better predict SOA mass from multiphase reactions. In this work, the UNIPAR model was incorporated with the Comprehensive Air Quality Model with Extensions (CAMx) to predict the ambient concentration of organic matter (OM) in urban atmospheres during the Korean-United States Air Quality (2016 KORUS-AQ) campaign. The SOA mass predicted with the CAMx-UNIPAR model changed with varying levels of humidity and emissions and in turn, has the potential to improve the accuracy of OM simulations. The CAMx-UNIPAR model significantly improved the simulation of SOA formation under the wet condition, which often occurred during the KORUS-AQ campaign, through the consideration of aqueous reactions of reactive organic species and gas-aqueous partitioning. The contribution of aromatic SOA to total OM was significant during the low-level transport/haze period (24–31 May 2016) because aromatic oxygenated products are hydrophilic and reactive in aqueous aerosols. The OM mass predicted with the CAMx-UNIPAR model was compared with that predicted with the CAMx model integrated with the conventional two product model (SOAP). Based on estimated statistical parameters to predict OM mass, the performance of CAMx-UNIPAR was noticeably better than the conventional CAMx model although both SOA models underestimated OM compared to observed values, possibly due to missing precursor hydrocarbons such as sesquiterpenes, alkanes, and intermediate VOCs. The CAMx-UNIPAR model simulation suggested that in the urban areas of South Korea, terpene and anthropogenic emissions significantly contribute to SOA formation while isoprene SOA minimally impacts SOA formation.


2022 ◽  
Vol 22 (1) ◽  
pp. 273-293
Author(s):  
Beatrix Rosette Go Mabato ◽  
Yan Lyu ◽  
Yan Ji ◽  
Yong Jie Li ◽  
Dan Dan Huang ◽  
...  

Abstract. Vanillin (VL), a phenolic aromatic carbonyl abundant in biomass burning emissions, forms triplet excited states (3VL∗) under simulated sunlight leading to aqueous secondary organic aerosol (aqSOA) formation. Nitrate and ammonium are among the main components of biomass burning aerosols and cloud or fog water. Under atmospherically relevant cloud and fog conditions, solutions composed of either VL only or VL with ammonium nitrate were subjected to simulated sunlight irradiation to compare aqSOA formation via the direct photosensitized oxidation of VL in the absence and presence of ammonium nitrate. The reactions were characterized by examining the VL decay kinetics, product compositions, and light absorbance changes. Both conditions generated oligomers, functionalized monomers, and oxygenated ring-opening products, and ammonium nitrate promoted functionalization and nitration, likely due to its photolysis products (⚫OH, ⚫NO2, and NO2- or HONO). Moreover, a potential imidazole derivative observed in the presence of ammonium nitrate suggested that ammonium participated in the reactions. The majority of the most abundant products from both conditions were potential brown carbon (BrC) chromophores. The effects of oxygen (O2), pH, and reactants concentration and molar ratios on the reactions were also explored. Our findings show that O2 plays an essential role in the reactions, and oligomer formation was enhanced at pH <4. Also, functionalization was dominant at low VL concentrations, whereas oligomerization was favored at high VL concentrations. Furthermore, oligomers and hydroxylated products were detected from the oxidation of guaiacol (a non-carbonyl phenol) via VL photosensitized reactions. Last, potential aqSOA formation pathways via the direct photosensitized oxidation of VL in the absence and presence of ammonium nitrate were proposed. This study indicates that the direct photosensitized oxidation of VL may be an important aqSOA source in areas influenced by biomass burning and underscores the importance of nitrate in the aqueous-phase processing of aromatic carbonyls.


2022 ◽  
Author(s):  
Aristeidis Voliotis ◽  
Mao Du ◽  
Yu Wang ◽  
Yunqi Shao ◽  
M. Rami Alfarra ◽  
...  

Abstract. A comprehensive investigation of the photochemical secondary organic aerosol (SOA) formation and transformation in mixtures of anthropogenic (o-cresol) and biogenic (α-pinene and isoprene) volatile organic compound (VOC) precursors in the presence of NOx and inorganic seed particles was conducted. Initial iso-reactivity was used to enable direct comparison across systems, adjusting the initial reactivity of the systems towards the assumed dominant oxidant (OH). Comparing experiments conducted in single precursor systems at various initial reactivity levels (referenced to a nominal base case VOC reactivity) and their binary and ternary mixtures, we show that the molecular interactions from the mixing of the precursors can be investigated and discuss limitations in their interpretation. The observed average SOA yields in descending order were found for the α-pinene (32 ± 7 %), α-pinene/o-cresol (28 ± 9 %), α-pinene at ½ initial reactivity (21 ± 5 %), α-pinene/isoprene (16 ± 1 %), α-pinene at ⅓ initial reactivity (15 ± 4 %), o-cresol (13 ± 3 %), α-pinene/o-cresol/isoprene (11 ± 4%), o-cresol at ½ initial reactivity (11 ± 3 %), o-cresol/isoprene (6 ± 2 %) and isoprene systems (0 ± 0 %). We find a clear suppression of the SOA yield from α-pinene when it is mixed with isoprene, whilst the addition of isoprene to o-cresol may enhance the mixture’s SOA formation potential, however, the difference was too small to be unequivocal. The α-pinene/o-cresol system yield appeared to be increased compared to that calculated based on the additivity, whilst in the α-pinene/o-cresol/isoprene system the measured and predicted yield were comparable. However, in mixtures where more than one precursor contributes to the SOA mass it is unclear whether changes in the SOA formation potential are attributable to physical or chemical interactions, since the reference basis for the comparison is complex. Online and offline chemical composition and SOA particle volatility, water uptake and “phase” behaviour measurements that were used to interpret the SOA formation and behaviour are introduced and detailed elsewhere.


2022 ◽  
Author(s):  
Linyu Gao ◽  
Junwei Song ◽  
Claudia Mohr ◽  
Wei Huang ◽  
Magdalena Vallon ◽  
...  

Abstract. β-caryophyllene (BCP) is one of the most important sesquiterpenes (SQTs) in the atmosphere, with a large potential contribution to secondary organic aerosol (SOA) formation mainly from reactions with ozone (O3) and nitrate radicals (NO3). In this work, we study the temperature dependence of the kinetics of BCP ozonolysis, SOA yields, and SOA chemical composition in the dark and in the absence and presence of nitrogen oxides including nitrate radicals (NO3). We cover a temperature range of 213 K – 313 K, representative of tropospheric conditions. The oxidized components in both gas and particle phases were characterized on a molecular level by a Chemical Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols using iodide as the reagent ion (FIGAERO-iodide-CIMS). The batch mode experiments were conducted in the 84.5 m3 aluminium simulation chamber AIDA at the Karlsruhe Institute of Technology (KIT). In the absence of nitrogen oxides, the temperature-dependent rate coefficient of the endocyclic double bond in BCP reacting with ozone between 243 – 313 K are negatively correlated with temperature, corresponding to the following Arrhenius equation: k = (1.6 ± 0.4)  × 10−15 × exp((559 ± 97)/T). The SOA yields increase from 16 ± 5 % to 37 ± 11% with temperatures decreasing from 313 K to 243 K at a total organic particle mass of 10 µg m−3. The variation of the ozonolysis temperature leads to substantial impact on the abundance of individual organic molecules. In the absence of nitrogen oxides, monomers C14-15H22-24O3-7 (37.4 %), dimers C28-30H44-48O5-9 (53.7 %) and trimers C41-44H62-66O9-11 (8.6 %) are abundant in the particle phase at 213 K. At 313 K, we observed more oxidized monomers (mainly C14-15H22-24O6-9, 67.5 %) and dimers (mainly C27-29H42-44O9-11, 27.6 %), including highly oxidized molecules (HOMs, C14H22O7,9, C15H22O7,9 C15H24O7,9) which can be formed via hydrogen shift mechanisms, but no significant trimers. In presence of nitrogen oxides, the organonitrate fraction increased from 3 % at 213 K to 12 % and 49 % at 243 K and 313 K, respectively. Most of the organonitrates were monomers with C15 skeletons and only one nitrate group. Higher oxygenated organonitrates were observed at higher temperatures, with their signal-weighted O : C atomic ratio increasing from 0.41 to 0.51 from 213 K to 313 K. New dimeric and trimeric organic species without nitrogen atoms (C20, C35) were formed in presence of nitrogen oxides at 298–313 K indicating potential new reaction pathways. Overall, our results show that increasing temperatures lead to a relatively small decrease of the rate coefficient of the endocyclic double bond in BCP reacting with ozone, but to a strong decrease in SOA yields. In contrast, the formation of HOMs and organonitrates increases significantly with temperature.


2022 ◽  
Vol 158 ◽  
pp. 106890
Author(s):  
Haiyan Ni ◽  
Ru-Jin Huang ◽  
Peng Yao ◽  
Max M. Cosijn ◽  
Norbertas Kairys ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document