scholarly journals Water Quality Modeling and Control in Recirculating Aquaculture Systems

10.5772/62302 ◽  
2016 ◽  
Author(s):  
Marian Barbu ◽  
Emil Ceanga ◽  
Sergiu Caraman
2014 ◽  
Vol 42 (11) ◽  
pp. 1573-1582 ◽  
Author(s):  
Meltem Kaçıkoç ◽  
Mehmet Beyhan

2015 ◽  
Vol 65 ◽  
pp. 17-26 ◽  
Author(s):  
Paulo Fernandes ◽  
Lars-Flemming Pedersen ◽  
Per Bovbjerg Pedersen

2021 ◽  
Vol 21 (7) ◽  
pp. 3975-3979
Author(s):  
Min-Jin Hwang ◽  
Jeongmin Cha ◽  
Eun-Sik Kim

In a fish farm, the water quality is important to ensure fish growth and farm productivity. However, the study of the quality of water using in aquaculture has been ignored until now. Although there are several methods to treat water, nanomaterials have not yet been applied for indoor fish farming because it may difficult to supply a sufficient amount of water, and the operating parameters have not been developed for recirculating aquaculture systems. Nanotechnology can be applied to treat water, specifically through adsorption and filtration, to produce drinking water from surface water and to treat wastewater by processing a high volume of effluent. The adsorption and filtration of seawater has also progressed to allow for desalination of seawater, and this is recognized as a necessary tool for extended treatment protocols of various types of seawater. This study investigated the treatment of aquaculture water using nano-porous adsorbents (e.g., pumice stone) to control the contaminants in seawater in order to maintain the water quality required for aquaculture. The results are used to derive an analytical relationship between the ionic species in aquaculture water, and this provides empirical parameters for a batch reactor for aquaculture. The quality of the influent and effluent for aquaculture is compared using time-series analyses to evaluate the reduction rate of ionic components and thus suggest the optimum condition for fish farming using bioreactor processes.


1998 ◽  
Vol 38 (10) ◽  
pp. 165-172 ◽  
Author(s):  
Ruochuan Gu ◽  
Mei Dong

The conventional method for waste load allocations (WLA) employs spatial-differentiation, considering individual point sources, and temporal-integration, using a constant flow, typically 7Q10 low flow. This paper presents a watershed-based seasonal management approach, in which non-point source as well as point sources are incorporated, seasonal design flows are used for water quality analysis, and WLA are performend in a watershed scale. The strategy for surface water quality modeling in the watershed-based approach is described. The concept of seasonal discharge management is discussed and suggested for the watershed-based approach. A case study using the method for the Des Moines River, Iowa, USA is conducted. Modeling considerations and procedure are presented. The significance of non-point source pollutant load and its impact on water quality of the river is evaluated by analyzing field data. A water quality model is selected and validated against field measurements. The model is applied to projections of future water quality situations under different watershed management and water quality control scenarios with respect to river flow and pollutant loading rate.


Sign in / Sign up

Export Citation Format

Share Document