scholarly journals Stimulated Brillouin Scattering Phase Conjugate Mirror and its Application to Coherent Beam Combined Laser System Producing a High Energy, High Power, High Beam Quality, and High Repetition Rate Output

Author(s):  
Hong Jin ◽  
Seong Ku ◽  
Jin Woo ◽  
Jae Sung ◽  
Sangwoo Park
Author(s):  
Hong Jin Kong ◽  
Sangwoo Park ◽  
Seongwoo Cha ◽  
Heekyung Ahn ◽  
Hwihyeong Lee ◽  
...  

In this review paper, we introduce a self-phase controlled stimulated Brillouin scattering phase conjugate mirror (SC-SBS-PCM) and the Kumgang laser. The SC-SBS-PCM was proposed and demonstrated its success at the academic low power level, ${\sim}100~\text{mJ}@10~\text{Hz}$ . The Kumgang laser is under development to verify whether the SC-SBS-PCM is operable at the kW level. It is a 4 kW beam combination laser combining four 1 kW beams using the SC-SBS-PCM. If the Kumgang laser functions successfully, it will be the most important step towards a Dream laser, a hypothetical laser with unlimited power and a high repetition rate.


2009 ◽  
Vol 27 (1) ◽  
pp. 179-184 ◽  
Author(s):  
H.J. Kong ◽  
J.S. Shin ◽  
J.W. Yoon ◽  
D.H. Beak

AbstractThe beam combination method using stimulated Brillouin scattering phase conjugate mirrors (SBS-PCMs) is a promising technique for a high energy and high power laser output operating with a high repetition rate. The two-beam combined system was previously demonstrated with an amplitude dividing method. A four-beam combined laser system with amplitude dividing method is demonstrated in this work, and the phase stabilization experiment of this system is performed using the self phase control and the long-term stabilization technique. The phase differences between the SBS waves are stabilized with λ/30 and the fluctuation of the four-beam combined output energy is 6.16% during 2000 shots (200 s).


Sign in / Sign up

Export Citation Format

Share Document