scholarly journals Generalized Baumslag–Solitar groups: rank and finite index subgroups

2015 ◽  
Vol 65 (2) ◽  
pp. 725-762 ◽  
Author(s):  
Gilbert Levitt
2011 ◽  
Vol 158 (17) ◽  
pp. 2391-2407 ◽  
Author(s):  
Dikran Dikranjan ◽  
Anna Giordano Bruno

2008 ◽  
Vol 136 (1) ◽  
pp. 145-165
Author(s):  
Vladimir Markovic ◽  
Dragomir Šarić

2012 ◽  
Vol 22 (03) ◽  
pp. 1250026
Author(s):  
UZY HADAD

We prove that for any finite index subgroup Γ in SL n(ℤ), there exists k = k(n) ∈ ℕ, ϵ = ϵ(Γ) > 0, and an infinite family of finite index subgroups in Γ with a Kazhdan constant greater than ϵ with respect to a generating set of order k. On the other hand, we prove that for any finite index subgroup Γ of SL n(ℤ), and for any ϵ > 0 and k ∈ ℕ, there exists a finite index subgroup Γ′ ≤ Γ such that the Kazhdan constant of any finite index subgroup in Γ′ is less than ϵ, with respect to any generating set of order k. In addition, we prove that the Kazhdan constant of the principal congruence subgroup Γn(m), with respect to a generating set consisting of elementary matrices (and their conjugates), is greater than [Formula: see text], where c > 0 depends only on n. For a fixed n, this bound is asymptotically best possible.


2015 ◽  
Vol 15 (5) ◽  
pp. 3025-3047 ◽  
Author(s):  
Paul Balmer ◽  
Ivo Dell’Ambrogio ◽  
Beren Sanders

Author(s):  
Frédérique Bassino ◽  
Cyril Nicaud ◽  
Pascal Weil

We count the finitely generated subgroups of the modular group [Formula: see text]. More precisely, each such subgroup [Formula: see text] can be represented by its Stallings graph [Formula: see text], we consider the number of vertices of [Formula: see text] to be the size of [Formula: see text] and we count the subgroups of size [Formula: see text]. Since an index [Formula: see text] subgroup has size [Formula: see text], our results generalize the known results on the enumeration of the finite index subgroups of [Formula: see text]. We give asymptotic equivalents for the number of finitely generated subgroups of [Formula: see text], as well as of the number of finite index subgroups, free subgroups and free finite index subgroups. We also give the expected value of the isomorphism type of a size [Formula: see text] subgroup and prove a large deviation statement concerning this value. Similar results are proved for finite index and for free subgroups. Finally, we show how to efficiently generate uniformly at random a size [Formula: see text] subgroup (respectively, finite index subgroup, free subgroup) of [Formula: see text].


2018 ◽  
Vol 2018 (735) ◽  
pp. 109-141 ◽  
Author(s):  
Andrew Putman

AbstractWe give a new proof of a celebrated theorem of Dennis Johnson that asserts that the kernel of the Johnson homomorphism on the Torelli subgroup of the mapping class group is generated by separating twists. In fact, we prove a more general result that also applies to “subsurface Torelli groups”. Using this, we extend Johnson’s calculation of the rational abelianization of the Torelli group not only to the subsurface Torelli groups, but also to finite-index subgroups of the Torelli group that contain the kernel of the Johnson homomorphism.


Author(s):  
Rémi Bottinelli ◽  
Laura Ciobanu ◽  
Alexander Kolpakov

AbstractIn this paper we derive a generating series for the number of cellular complexes known as pavings or three-dimensional maps, on n darts, thus solving an analogue of Tutte’s problem in dimension three. The generating series we derive also counts free subgroups of index n in $$\Delta ^+ = {\mathbb {Z}}_2*{\mathbb {Z}}_2*{\mathbb {Z}}_2$$ Δ + = Z 2 ∗ Z 2 ∗ Z 2 via a simple bijection between pavings and finite index subgroups which can be deduced from the action of $$\Delta ^+$$ Δ + on the cosets of a given subgroup. We then show that this generating series is non-holonomic. Furthermore, we provide and study the generating series for isomorphism classes of pavings, which correspond to conjugacy classes of free subgroups of finite index in $$\Delta ^+$$ Δ + . Computational experiments performed with software designed by the authors provide some statistics about the topology and combinatorics of pavings on $$n\le 16$$ n ≤ 16 darts.


2007 ◽  
Vol 17 (03) ◽  
pp. 427-447 ◽  
Author(s):  
LUIS PARIS

We prove that a non-spherical irreducible Coxeter group is (directly) indecomposable and that an indefinite irreducible Coxeter group is strongly indecomposable in the sense that all its finite index subgroups are (directly) indecomposable. Let W be a Coxeter group. Write W = WX1 × ⋯ × WXb × WZ3, where WX1, … , WXb are non-spherical irreducible Coxeter groups and WZ3 is a finite one. By a classical result, known as the Krull–Remak–Schmidt theorem, the group WZ3 has a decomposition WZ3 = H1 × ⋯ × Hq as a direct product of indecomposable groups, which is unique up to a central automorphism and a permutation of the factors. Now, W = WX1 × ⋯ × WXb × H1 × ⋯ × Hq is a decomposition of W as a direct product of indecomposable subgroups. We prove that such a decomposition is unique up to a central automorphism and a permutation of the factors. Write W = WX1 × ⋯ × WXa × WZ2 × WZ3, where WX1, … , WXa are indefinite irreducible Coxeter groups, WZ2 is an affine Coxeter group whose irreducible components are all infinite, and WZ3 is a finite Coxeter group. The group WZ2 contains a finite index subgroup R isomorphic to ℤd, where d = |Z2| - b + a and b - a is the number of irreducible components of WZ2. Choose d copies R1, … , Rd of ℤ such that R = R1 × ⋯ × Rd. Then G = WX1 × ⋯ × WXa × R1 × ⋯ × Rd is a virtual decomposition of W as a direct product of strongly indecomposable subgroups. We prove that such a virtual decomposition is unique up to commensurability and a permutation of the factors.


2004 ◽  
Vol 188 (1) ◽  
pp. 1-50 ◽  
Author(s):  
Thomas W. Müller ◽  
Jan-Christoph Schlage-Puchta

Sign in / Sign up

Export Citation Format

Share Document