scholarly journals Geodesic flow of nonstrictly convex Hilbert geometries

2021 ◽  
Vol 70 (4) ◽  
pp. 1563-1593
Author(s):  
Harrison Bray
Keyword(s):  
Author(s):  
Jean-Michel Bismut

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.


1982 ◽  
Vol 67 (2) ◽  
pp. 297-331 ◽  
Author(s):  
M. Adler ◽  
P. van Moerbeke

2015 ◽  
Vol 37 (3) ◽  
pp. 939-970 ◽  
Author(s):  
RUSSELL RICKS

Let$X$be a proper, geodesically complete CAT($0$) space under a proper, non-elementary, isometric action by a group$\unicode[STIX]{x1D6E4}$with a rank one element. We construct a generalized Bowen–Margulis measure on the space of unit-speed parametrized geodesics of$X$modulo the$\unicode[STIX]{x1D6E4}$-action. Although the construction of Bowen–Margulis measures for rank one non-positively curved manifolds and for CAT($-1$) spaces is well known, the construction for CAT($0$) spaces hinges on establishing a new structural result of independent interest: almost no geodesic, under the Bowen–Margulis measure, bounds a flat strip of any positive width. We also show that almost every point in$\unicode[STIX]{x2202}_{\infty }X$, under the Patterson–Sullivan measure, is isolated in the Tits metric. (For these results we assume the Bowen–Margulis measure is finite, as it is in the cocompact case.) Finally, we precisely characterize mixing when$X$has full limit set: a finite Bowen–Margulis measure is not mixing under the geodesic flow precisely when$X$is a tree with all edge lengths in$c\mathbb{Z}$for some$c>0$. This characterization is new, even in the setting of CAT($-1$) spaces. More general (technical) versions of these results are also stated in the paper.


1993 ◽  
Vol 13 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Miguel Paternain

AbstractWe prove the following result: if M is a compact Riemannian surface whose geodesic flow is expansive, then M has no conjugate points. This result and the techniques of E. Ghys imply that all expansive geodesic flows of a compact surface are topologically equivalent.


Author(s):  
MACIEJ DUNAJSKI ◽  
PAUL TOD

Abstract We study the integrability of the conformal geodesic flow (also known as the conformal circle flow) on the SO(3)–invariant gravitational instantons. On a hyper–Kähler four–manifold the conformal geodesic equations reduce to geodesic equations of a charged particle moving in a constant self–dual magnetic field. In the case of the anti–self–dual Taub NUT instanton we integrate these equations completely by separating the Hamilton–Jacobi equations, and finding a commuting set of first integrals. This gives the first example of an integrable conformal geodesic flow on a four–manifold which is not a symmetric space. In the case of the Eguchi–Hanson we find all conformal geodesics which lie on the three–dimensional orbits of the isometry group. In the non–hyper–Kähler case of the Fubini–Study metric on $\mathbb{CP}^2$ we use the first integrals arising from the conformal Killing–Yano tensors to recover the known complete integrability of conformal geodesics.


2018 ◽  
Vol 23 (6) ◽  
pp. 685-694
Author(s):  
Victor Donnay ◽  
Daniel Visscher

Sign in / Sign up

Export Citation Format

Share Document