jacobi equations
Recently Published Documents


TOTAL DOCUMENTS

953
(FIVE YEARS 159)

H-INDEX

54
(FIVE YEARS 3)

2022 ◽  
Vol 171 ◽  
pp. 353-368
Author(s):  
Yan-Qun Jiang ◽  
Shu-Guang Zhou ◽  
Xu Zhang ◽  
Ying-Gang Hu

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Marco Matone

AbstractWe formulate Friedmann’s equations as second-order linear differential equations. This is done using techniques related to the Schwarzian derivative that selects the$$\beta $$ β -times $$t_\beta :=\int ^t a^{-2\beta }$$ t β : = ∫ t a - 2 β , where a is the scale factor. In particular, it turns out that Friedmann’s equations are equivalent to the eigenvalue problems $$\begin{aligned} O_{1/2} \Psi =\frac{\Lambda }{12}\Psi , \quad O_1 a =-\frac{\Lambda }{3} a , \end{aligned}$$ O 1 / 2 Ψ = Λ 12 Ψ , O 1 a = - Λ 3 a , which is suggestive of a measurement problem. $$O_{\beta }(\rho ,p)$$ O β ( ρ , p ) are space-independent Klein–Gordon operators, depending only on energy density and pressure, and related to the Klein–Gordon Hamilton–Jacobi equations. The $$O_\beta $$ O β ’s are also independent of the spatial curvature, labeled by k, and absorbed in $$\begin{aligned} \Psi =\sqrt{a} e^{\frac{i}{2}\sqrt{k}\eta } . \end{aligned}$$ Ψ = a e i 2 k η . The above pair of equations is the unique possible linear form of Friedmann’s equations unless $$k=0$$ k = 0 , in which case there are infinitely many pairs of linear equations. Such a uniqueness just selects the conformal time $$\eta \equiv t_{1/2}$$ η ≡ t 1 / 2 among the $$t_\beta $$ t β ’s, which is the key to absorb the curvature term. An immediate consequence of the linear form is that it reveals a new symmetry of Friedmann’s equations in flat space.


2021 ◽  
Vol 2021 (11) ◽  
pp. 113206
Author(s):  
P L Garrido

Abstract We assume that a system at a mesoscopic scale is described by a field ϕ(x, t) that evolves by a Langevin equation with a white noise whose intensity is controlled by a parameter 1 / Ω . The system stationary state distribution in the small noise limit (Ω → ∞) is of the form P st [ϕ] ≃ exp(−ΩV 0[ϕ]), where V 0[ϕ] is called the quasipotential. V 0 is the unknown of a Hamilton–Jacobi equation. Therefore, V 0 can be written as an action computed along a path that is the solution from Hamilton’s equation that typically cannot be solved explicitly. This paper presents a theoretical scheme that builds a suitable canonical transformation that permits us to do such integration by deforming the original path into a straight line and including some weights along with it. We get the functional form of such weights through conditions on the existence and structure of the canonical transformation. We apply the scheme to get the quasipotential algebraically for several one-dimensional nonequilibrium models as the diffusive and reaction–diffusion systems.


Author(s):  
Piermarco Cannarsa ◽  
Wei Cheng ◽  
Cristian Mendico ◽  
Kaizhi Wang

AbstractWe study the asymptotic behavior of solutions to the constrained MFG system as the time horizon T goes to infinity. For this purpose, we analyze first Hamilton–Jacobi equations with state constraints from the viewpoint of weak KAM theory, constructing a Mather measure for the associated variational problem. Using these results, we show that a solution to the constrained ergodic mean field games system exists and the ergodic constant is unique. Finally, we prove that any solution of the first-order constrained MFG problem on [0, T] converges to the solution of the ergodic system as T goes to infinity.


Sign in / Sign up

Export Citation Format

Share Document